Reputation: 435
I'm trying to visualize the confidence intervals for a set of Monte Carlo draws and am having some issues with my approach using alpha levels.
I'm running a loess regression for each draw and I wanted to try to visualize how the confidence intervals from each draw overlapped by displaying them on top of one another with reduced alphas to produce a gradient effect.
Essentially in the end produce the darkest areas would show where the confidence intervals overlapped the most.
As you can see in the example, the central portions are heavily obscured. While this pattern is to be expected, there isn't as much differentiation shown in the central portions as I need. I tried reducing the alpha level, but the result remained the same. After some looking around I found that ggplot2 doesn't display alphas at levels lower than 0.1.
Edit
As mentioned in the comment, the alpha can in fact be set below 0.1, and from my own quick testing it seems anything set at 0.005 is where it fails to display. Even though this is quite low, I would like to display the alpha at an even lower level or use an alternative approach if possible.
The included sample set is a little long, but in the initial 20 draw sample the problem wasn't as clear. This set shown here includes 50 draws, but the actual analysis consists of 1000 draws, so the effect is even more pronounced.
I'd like to know if there are any workaround to achieve an effect that is similar to what I'm looking for, or if there is another way to visualize this.
Sample plot image set at 0.006
Sample code
ggplot(data = subset(play, !is.na(y)),
aes(x = -x, y = y, group = RunID)) +
geom_smooth(method = "loess", linetype = 0, alpha = 0.1) +
scale_x_reverse() +
theme_minimal()
Reproducible sample
dput(play)
structure(list(x = c(-4616, -4510, -4465, -4473, -4466, -4689,
-5301, -5214, -4880, -4869, -5122, -4771, -5045, -4535, -4670,
-4988, -4752, -4478, -4427, -4650, -5284, -4866, -4930, -4915,
-5136, -4599, -5246, -4806, -4554, -5046, -4429, -4419, -4494,
-4631, -4403, -5309, -5197, -4900, -4889, -5107, -5131, -4410,
-4635, -4558, -4912, -5010, -5330, -4484, -4669, -4665, -4541,
-4420, -5295, -4901, -4867, -4911, -5170, -4496, -5068, -4401,
-4680, -4810, -4528, -4980, -4487, -4626, -4649, -4456, -5296,
-5087, -4945, -4883, -5201, -5302, -4436, -4654, -4609, -5052,
-4909, -4485, -4531, -4423, -4609, -5280, -5091, -4901, -4862,
-5216, -4829, -4806, -4809, -4776, -4729, -5386, -4412, -4571,
-4595, -4410, -4475, -5302, -5010, -4891, -4867, -5217, -4870,
-4417, -4838, -4582, -4696, -5035, -5346, -4488, -4589, -4430,
-5275, -5150, -4878, -4929, -5118, -5284, -4968, -4737, -4877,
-5159, -4963, -4469, -4624, -4473, -4431, -5282, -5268, -4924,
-4928, -5228, -4891, -4923, -4643, -4550, -4848, -4878, -4451,
-4547, -4470, -4466, -4446, -5304, -5085, -4885, -4868, -5104,
-4742, -4703, -4586, -4930, -4747, -5226, -4550, -4448, -5290,
-4892, -4936, -4929, -5138, -5143, -4520, -4490, -4910, -4914,
-4505, -4574, -4540, -4476, -4500, -4645, -4462, -5306, -4924,
-4898, -4888, -5217, -5283, -4462, -4719, -4881, -4740, -4497,
-5234, -5111, -4461, -4413, -4480, -4566, -4552, -4424, -5303,
-4964, -4878, -4881, -5160, -4449, -4566, -4702, -4737, -4463,
-5070, -4422, -4457, -4452, -4681, -4578, -5271, -4873, -4887,
-4889, -5185, -4985, -4514, -4924, -4573, -4540, -5168, -4475,
-4594, -4662, -5299, -4990, -4869, -4923, -4435, -5170, -4488,
-4623, -4596, -4532, -4651, -4435, -4414, -4550, -4702, -4405,
-5283, -5267, -4927, -4915, -5193, -5177, -4959, -4647, -4569,
-4722, -5316, -4424, -4486, -4402, -4672, -4494, -5291, -5134,
-4883, -4950, -5125, -4814, -4405, -4674, -4729, -4668, -5244,
-5348, -4405, -4507, -4612, -4632, -4460, -5299, -4995, -4861,
-4944, -5171, -5220, -4906, -4875, -4766, -4709, -5213, -5085,
-4455, -4402, -4715, -4729, -4435, -4415, -5271, -5266, -4915,
-4919, -5148, -5324, -4706, -4824, -4847, -4786, -4425, -4447,
-4644, -4549, -4632, -5281, -5012, -4923, -4947, -5140, -5202,
-5188, -4747, -4642, -4633, -4689, -4433, -4474, -4616, -4462,
-4468, -5297, -5293, -4941, -4920, -5125, -4406, -5352, -4844,
-4590, -4423, -4456, -4436, -4675, -4507, -5297, -4867, -4900,
-4902, -4436, -5141, -4603, -4849, -4932, -4669, -4493, -4544,
-4434, -4490, -4409, -4590, -4418, -4698, -4471, -5288, -5309,
-4935, -4912, -5172, -4973, -4806, -4540, -4616, -4847, -5223,
-4449, -4481, -4541, -4617, -5301, -5177, -4938, -4893, -5179,
-5124, -4668, -4635, -4432, -4739, -4945, -4901, -4432, -4475,
-4661, -4503, -4442, -5309, -5271, -4941, -4925, -5204, -5242,
-5086, -4828, -4543, -5020, -5359, -4404, -4475, -4659, -4689,
-5276, -5241, -4944, -4862, -5119, -5286, -4403, -4517, -4610,
-4869, -4717, -5017, -4479, -4438, -4450, -4730, -4607, -4467,
-4453, -5307, -5157, -4884, -4861, -5213, -4444, -4675, -4886,
-4473, -4786, -5311, -4724, -4411, -4655, -4418, -4440, -5282,
-4875, -4909, -4872, -5193, -5242, -4909, -4565, -4615, -4881,
-5114, -4419, -4663, -4471, -5300, -5097, -4880, -4879, -5100,
-4610, -4428, -4618, -4922, -4778, -4907, -4403, -4605, -4585,
-4431, -5275, -5032, -4875, -4933, -5125, -5264, -4596, -4768,
-4630, -4550, -4444, -4415, -4495, -4685, -4433, -4481, -4423,
-5274, -5199, -4869, -4861, -5166, -5225, -5068, -4468, -4743,
-4586, -4936, -5319, -4873, -4422, -4471, -4705, -4589, -4428,
-5307, -4898, -4897, -4891, -5121, -4837, -4501, -4786, -4946,
-5253, -5061, -4421, -4717, -4528, -4448, -5291, -5062, -4897,
-4914, -5181, -5399, -4453, -5250, -4838, -4629, -4716, -4551,
-4689, -4425, -4467, -4592, -4401, -4427, -5270, -4984, -4867,
-4879, -5222, -4467, -4922, -4480, -4723, -4621, -4827, -4525,
-4538, -4586, -4426, -4463, -5285, -5096, -4895, -4890, -5200,
-4844, -4432, -4752, -4726, -5195, -5108, -4410, -4454, -4596,
-4475, -5279, -5014, -4939, -4942, -5210, -5357, -4795, -4580,
-4792, -4535, -4756, -5312, -4437, -4451, -4709, -4547, -4463,
-5286, -5217, -4877, -4905, -5185, -4984, -4532, -4809, -4492,
-4878, -4657, -4719, -4443, -4472, -4663, -4666, -4528, -5307,
-5115, -4940, -4932, -5148, -4837, -4479, -4901, -4538, -5017,
-4730, -4464, -4518, -4405, -4589, -5292, -5063, -4934, -4943,
-5168, -5219, -4509, -4774, -4460, -4809, -4843, -4740, -4426,
-4538, -4710, -4573, -4567, -4470, -4402, -5270, -5256, -4901,
-4916, -5196, -5326, -4855, -4726, -4558, -4458, -4448, -4539,
-4567, -4594, -4552, -5294, -4917, -4863, -4891, -5189, -4786,
-5329, -4669, -4680, -5302, -5285, -4459, -4472, -4673, -4720,
-5307, -4864, -4929, -4906, -5219, -5088, -5031, -4491, -4552,
-4560, -5187, -4497, -4649, -4466, -4715, -4444, -5270, -4999,
-4939, -4897, -5106, -4798, -4890, -4583, -4841, -4517, -4858,
-4484, -4432, -4714, -4447, -5300, -4876, -4932, -4949, -4428,
-5187, -4754, -5293, -4806, -4740, -4993, -4440, -4419, -4436,
-4682, -4648, -4609, -5290, -5128, -4862, -4861, -5105, -5181,
-4488, -4981, -4510, -4694, -5064, -4456, -4448, -4639, -4485,
-4537, -5299, -4975, -4943, -4865, -5190, -4628, -4921, -4552,
-4665, -4863, -4592, -4544, -4425, -4471, -4728, -4511, -5296,
-5284, -4928, -4863, -5172, -5069, -4970, -4803, -4722, -4852,
-4827, -5333, -4438, -4514, -4489, -4575, -4402, -4541, -5282,
-5031, -4908, -4928, -5161, -5370, -4453, -5381, -4694, -4578,
-4479, -4733, -4473, -4407, -4552, -4444, -4596, -4424, -5295,
-5114, -4933, -4915, -5156, -5385, -5106, -4713, -4692, -5305,
-5095, -4482, -4706, -4654, -4440, -5292, -5267, -4912, -4946,
-5114, -5295, -4542, -4543, -4745), y = c(0.191919191919192,
0, 0.4, 0.133333333333333, 0.126984126984127, 0.2, 0.241803278688029,
0.2, 0.0588235294117647, 0.244791666666667, 0, 0.2, 0.166666666666667,
0.184027777777778, 0.5, 0.191919191919192, 0, 0.133333333333333,
0.126984126984127, 0.2, 0.241803278688029, 0.2, 0.0588235294117647,
0.244791666666667, 0, 0.2, 0.166666666666667, 0.184027777777778,
0.5, 0.191919191919192, 0, 0.4, 0.133333333333333, 0.2, 0.296296296296296,
0.241803278688029, 0.2, 0.0588235294117647, 0.244791666666667,
0, 0.2, 0.193548387096774, 0.166666666666667, 0.184027777777778,
0.5, 0.191919191919192, 0, 0.4, 0.2, 0.296296296296296, 0.133333333333333,
0.160493827160494, 0.241803278688029, 0.2, 0.0588235294117647,
0.244791666666667, 0, 0.2, 0.166666666666667, 0.2, 0.184027777777778,
0.5, 0.191919191919192, 0, 0.4, 0.2, 0.296296296296296, 0.125,
0.241803278688029, 0.2, 0.0588235294117647, 0.244791666666667,
0, 0.2, 0.166666666666667, 0.184027777777778, 0.5, 0.191919191919192,
0, 0.4, 0.133333333333333, 0.126984126984127, 0.2, 0.241803278688029,
0.2, 0.0588235294117647, 0.244791666666667, 0, 0.2, 0.166666666666667,
0.184027777777778, 0.5, 0.191919191919192, 0, 0.4, 0.2, 0.296296296296296,
0.133333333333333, 0.160493827160494, 0.241803278688029, 0.2,
0.0588235294117647, 0.244791666666667, 0, 0.2, 0.193548387096774,
0.166666666666667, 0.184027777777778, 0.5, 0.191919191919192,
0, 0.4, 0.2, 0.160493827160494, 0.241803278688029, 0.2, 0.0588235294117647,
0.244791666666667, 0, 0.2, 0.166666666666667, 0.184027777777778,
0.5, 0.191919191919192, 0, 0.4, 0.2, 0.296296296296296, 0.160493827160494,
0.241803278688029, 0.2, 0.0588235294117647, 0.244791666666667,
0, 0.2, 0.166666666666667, 0.184027777777778, 0.5, 0.191919191919192,
0, 0.4, 0.2, 0.296296296296296, 0.133333333333333, 0.160493827160494,
0.241803278688029, 0.2, 0.0588235294117647, 0.244791666666667,
0, 0.2, 0.166666666666667, 0.184027777777778, 0.5, 0.191919191919192,
0, 0.2, 0.133333333333333, 0.241803278688029, 0.2, 0.0588235294117647,
0.244791666666667, 0, 0.2, 0.166666666666667, 0.2, 0.184027777777778,
0.130434782608696, 0.5, 0.191919191919192, 0, 0.4, 0.133333333333333,
0.2, 0.160493827160494, 0.241803278688029, 0.2, 0.0588235294117647,
0.244791666666667, 0, 0.2, 0.193548387096774, 0.166666666666667,
0.184027777777778, 0.130434782608696, 0.5, 0.191919191919192,
0, 0.4, 0.133333333333333, 0.126984126984127, 0.2, 0.296296296296296,
0.125, 0.241803278688029, 0.2, 0.0588235294117647, 0.244791666666667,
0, 0.2, 0.166666666666667, 0.184027777777778, 0.5, 0.191919191919192,
0, 0.4, 0.133333333333333, 0.126984126984127, 0.2, 0.133333333333333,
0.241803278688029, 0.2, 0.0588235294117647, 0.244791666666667,
0, 0.2, 0.166666666666667, 0.184027777777778, 0.130434782608696,
0.5, 0.191919191919192, 0.4, 0.2, 0.133333333333333, 0.241803278688029,
0.2, 0.0588235294117647, 0.244791666666667, 0.22884012539185,
0, 0.2, 0.166666666666667, 0.184027777777778, 0.5, 0.191919191919192,
0, 0.4, 0.2, 0.296296296296296, 0.133333333333333, 0.241803278688029,
0.2, 0.0588235294117647, 0.244791666666667, 0, 0.2, 0.166666666666667,
0.184027777777778, 0.5, 0.191919191919192, 0, 0.4, 0.133333333333333,
0.126984126984127, 0.2, 0.133333333333333, 0.241803278688029,
0.2, 0.0588235294117647, 0.244791666666667, 0, 0.2, 0.193548387096774,
0.166666666666667, 0.184027777777778, 0.5, 0.191919191919192,
0, 0.4, 0.133333333333333, 0.2, 0.133333333333333, 0.125, 0.241803278688029,
0.2, 0.0588235294117647, 0.244791666666667, 0, 0.2, 0.166666666666667,
0.184027777777778, 0.130434782608696, 0.5, 0.191919191919192,
0, 0.4, 0.133333333333333, 0.2, 0.296296296296296, 0.133333333333333,
0.160493827160494, 0.241803278688029, 0.2, 0.0588235294117647,
0.244791666666667, 0, 0.2, 0.166666666666667, 0.184027777777778,
0.5, 0.191919191919192, 0, 0.4, 0.2, 0.296296296296296, 0.133333333333333,
0.241803278688029, 0.2, 0.0588235294117647, 0.244791666666667,
0, 0.2, 0.166666666666667, 0.184027777777778, 0.5, 0.191919191919192,
0, 0.4, 0.133333333333333, 0.2, 0.160493827160494, 0, 0.241803278688029,
0.2, 0.0588235294117647, 0.244791666666667, 0, 0.2, 0.166666666666667,
0.184027777777778, 0.5, 0.191919191919192, 0, 0.4, 0.2, 0.296296296296296,
0.241803278688029, 0.2, 0.0588235294117647, 0.244791666666667,
0.22884012539185, 0, 0.2, 0.166666666666667, 0.184027777777778,
0.5, 0.191919191919192, 0, 0.4, 0.133333333333333, 0.126984126984127,
0.2, 0.296296296296296, 0.133333333333333, 0.160493827160494,
0.241803278688029, 0.2, 0.0588235294117647, 0.244791666666667,
0, 0.2, 0.166666666666667, 0.184027777777778, 0.5, 0.191919191919192,
0, 0.4, 0.126984126984127, 0.2, 0.133333333333333, 0.241803278688029,
0.2, 0.0588235294117647, 0.244791666666667, 0, 0.2, 0.166666666666667,
0.184027777777778, 0.130434782608696, 0.5, 0.191919191919192,
0, 0.4, 0.133333333333333, 0.2, 0.296296296296296, 0.160493827160494,
0.241803278688029, 0.2, 0.0588235294117647, 0.244791666666667,
0, 0.2, 0.166666666666667, 0.184027777777778, 0.5, 0.191919191919192,
0, 0.4, 0.133333333333333, 0.2, 0.296296296296296, 0.241803278688029,
0.2, 0.0588235294117647, 0.244791666666667, 0, 0.2, 0.193548387096774,
0.166666666666667, 0.184027777777778, 0.5, 0.191919191919192,
0, 0.4, 0.133333333333333, 0.126984126984127, 0.2, 0.296296296296296,
0.133333333333333, 0, 0.241803278688029, 0.2, 0.0588235294117647,
0.244791666666667, 0, 0.2, 0.166666666666667, 0.184027777777778,
0.130434782608696, 0.5, 0.191919191919192, 0, 0.4, 0.2, 0.296296296296296,
0.125, 0.241803278688029, 0.2, 0.0588235294117647, 0.244791666666667,
0, 0.2, 0.166666666666667, 0.184027777777778, 0.5, 0.191919191919192,
0, 0.4, 0.2, 0, 0.241803278688029, 0.2, 0.0588235294117647, 0.244791666666667,
0, 0.2, 0.166666666666667, 0.184027777777778, 0.5, 0.191919191919192,
0, 0.4, 0.2, 0.296296296296296, 0.160493827160494, 0.241803278688029,
0.2, 0.0588235294117647, 0.244791666666667, 0, 0.2, 0.166666666666667,
0.184027777777778, 0.5, 0.191919191919192, 0, 0.4, 0.133333333333333,
0.2, 0.296296296296296, 0.160493827160494, 0.125, 0.241803278688029,
0.2, 0.0588235294117647, 0.244791666666667, 0, 0.2, 0.166666666666667,
0.2, 0.184027777777778, 0.130434782608696, 0.5, 0.191919191919192,
0, 0.4, 0.126984126984127, 0.2, 0.296296296296296, 0.133333333333333,
0.241803278688029, 0.2, 0.0588235294117647, 0.244791666666667,
0, 0.2, 0.184027777777778, 0.130434782608696, 0.5, 0.191919191919192,
0, 0.4, 0.2, 0.296296296296296, 0.125, 0.241803278688029, 0.2,
0.0588235294117647, 0.244791666666667, 0, 0.2, 0.193548387096774,
0.166666666666667, 0.184027777777778, 0.130434782608696, 0.5,
0.191919191919192, 0, 0.4, 0.126984126984127, 0.2, 0.133333333333333,
0.160493827160494, 0.241803278688029, 0.2, 0.0588235294117647,
0.244791666666667, 0, 0.2, 0.166666666666667, 0.2, 0.184027777777778,
0.5, 0.191919191919192, 0, 0.133333333333333, 0.2, 0.296296296296296,
0.160493827160494, 0.241803278688029, 0.2, 0.0588235294117647,
0.244791666666667, 0, 0.2, 0.166666666666667, 0.184027777777778,
0.5, 0.191919191919192, 0, 0.4, 0.133333333333333, 0.2, 0.160493827160494,
0.241803278688029, 0.2, 0.0588235294117647, 0.244791666666667,
0, 0.2, 0.166666666666667, 0.184027777777778, 0.130434782608696,
0.5, 0.191919191919192, 0, 0.4, 0.126984126984127, 0.2, 0.296296296296296,
0.133333333333333, 0.241803278688029, 0.2, 0.0588235294117647,
0.244791666666667, 0, 0.2, 0.166666666666667, 0.184027777777778,
0.130434782608696, 0.5, 0.191919191919192, 0, 0.4, 0.126984126984127,
0.2, 0.296296296296296, 0.133333333333333, 0.241803278688029,
0.2, 0.0588235294117647, 0.244791666666667, 0, 0.2, 0.166666666666667,
0.184027777777778, 0.5, 0.191919191919192, 0, 0.4, 0.133333333333333,
0.126984126984127, 0.2, 0.241803278688029, 0.2, 0.0588235294117647,
0.244791666666667, 0, 0.2, 0.166666666666667, 0.184027777777778,
0.130434782608696, 0.5, 0.191919191919192, 0, 0.4, 0.133333333333333,
0.2, 0.296296296296296, 0.133333333333333, 0.125, 0, 0.241803278688029,
0.2, 0.0588235294117647, 0.244791666666667, 0, 0.2, 0.166666666666667,
0.184027777777778, 0.5, 0.191919191919192, 0.4, 0.133333333333333,
0.2, 0.296296296296296, 0.133333333333333, 0.241803278688029,
0.2, 0.0588235294117647, 0.244791666666667, 0, 0.2, 0.166666666666667,
0.184027777777778, 0.5, 0.191919191919192, 0, 0.4, 0.133333333333333,
0.2, 0.296296296296296, 0.241803278688029, 0.2, 0.0588235294117647,
0.244791666666667, 0, 0.2, 0.166666666666667, 0.184027777777778,
0.5, 0.191919191919192, 0, 0.133333333333333, 0.2, 0.296296296296296,
0.133333333333333, 0.160493827160494, 0.241803278688029, 0.2,
0.0588235294117647, 0.244791666666667, 0, 0.2, 0.166666666666667,
0.184027777777778, 0.5, 0.191919191919192, 0, 0.4, 0.133333333333333,
0.2, 0.160493827160494, 0.241803278688029, 0.2, 0.0588235294117647,
0.244791666666667, 0.22884012539185, 0, 0.2, 0.166666666666667,
0.184027777777778, 0.5, 0.191919191919192, 0, 0.4, 0.133333333333333,
0.2, 0.296296296296296, 0.133333333333333, 0.241803278688029,
0.2, 0.0588235294117647, 0.244791666666667, 0, 0.2, 0.193548387096774,
0.166666666666667, 0.184027777777778, 0.5, 0.191919191919192,
0, 0.4, 0.2, 0.296296296296296, 0.133333333333333, 0.241803278688029,
0.2, 0.0588235294117647, 0.244791666666667, 0, 0.2, 0.166666666666667,
0.184027777777778, 0.130434782608696, 0.5, 0.191919191919192,
0, 0.4, 0.133333333333333, 0.2, 0.296296296296296, 0.241803278688029,
0.2, 0.0588235294117647, 0.244791666666667, 0, 0.2, 0.166666666666667,
0.184027777777778, 0.130434782608696, 0.5, 0.191919191919192,
0, 0.4, 0.133333333333333, 0.126984126984127, 0.2, 0.296296296296296,
0.133333333333333, 0.241803278688029, 0.2, 0.0588235294117647,
0.244791666666667, 0, 0.2, 0.193548387096774, 0.166666666666667,
0.184027777777778, 0.5, 0.191919191919192, 0, 0.4, 0.126984126984127,
0.2, 0.296296296296296, 0.133333333333333, 0.160493827160494,
0.241803278688029, 0.2, 0.0588235294117647, 0.244791666666667,
0, 0.2, 0.166666666666667, 0.184027777777778, 0.5, 0.191919191919192,
0, 0.4, 0.2, 0.296296296296296, 0, 0.241803278688029, 0.2, 0.0588235294117647,
0.244791666666667, 0, 0.2, 0.166666666666667, 0.184027777777778,
0.5), RunID = c(1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L,
4L, 4L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L,
5L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L,
7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L,
7L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 9L,
9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 10L,
10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L,
10L, 10L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L,
11L, 11L, 11L, 11L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L,
12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 13L, 13L, 13L, 13L, 13L,
13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 14L,
14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L, 14L,
14L, 14L, 14L, 15L, 15L, 15L, 15L, 15L, 15L, 15L, 15L, 15L, 15L,
15L, 15L, 15L, 15L, 16L, 16L, 16L, 16L, 16L, 16L, 16L, 16L, 16L,
16L, 16L, 16L, 16L, 16L, 16L, 17L, 17L, 17L, 17L, 17L, 17L, 17L,
17L, 17L, 17L, 17L, 17L, 17L, 17L, 17L, 17L, 17L, 18L, 18L, 18L,
18L, 18L, 18L, 18L, 18L, 18L, 18L, 18L, 18L, 18L, 18L, 18L, 18L,
18L, 19L, 19L, 19L, 19L, 19L, 19L, 19L, 19L, 19L, 19L, 19L, 19L,
19L, 19L, 19L, 19L, 19L, 20L, 20L, 20L, 20L, 20L, 20L, 20L, 20L,
20L, 20L, 20L, 20L, 20L, 20L, 20L, 21L, 21L, 21L, 21L, 21L, 21L,
21L, 21L, 21L, 21L, 21L, 21L, 21L, 21L, 21L, 21L, 22L, 22L, 22L,
22L, 22L, 22L, 22L, 22L, 22L, 22L, 22L, 22L, 22L, 22L, 22L, 23L,
23L, 23L, 23L, 23L, 23L, 23L, 23L, 23L, 23L, 23L, 23L, 23L, 23L,
23L, 23L, 23L, 23L, 24L, 24L, 24L, 24L, 24L, 24L, 24L, 24L, 24L,
24L, 24L, 24L, 24L, 24L, 24L, 24L, 25L, 25L, 25L, 25L, 25L, 25L,
25L, 25L, 25L, 25L, 25L, 25L, 25L, 25L, 25L, 25L, 26L, 26L, 26L,
26L, 26L, 26L, 26L, 26L, 26L, 26L, 26L, 26L, 26L, 26L, 26L, 26L,
27L, 27L, 27L, 27L, 27L, 27L, 27L, 27L, 27L, 27L, 27L, 27L, 27L,
27L, 27L, 27L, 27L, 27L, 27L, 28L, 28L, 28L, 28L, 28L, 28L, 28L,
28L, 28L, 28L, 28L, 28L, 28L, 28L, 28L, 29L, 29L, 29L, 29L, 29L,
29L, 29L, 29L, 29L, 29L, 29L, 29L, 29L, 29L, 30L, 30L, 30L, 30L,
30L, 30L, 30L, 30L, 30L, 30L, 30L, 30L, 30L, 30L, 30L, 31L, 31L,
31L, 31L, 31L, 31L, 31L, 31L, 31L, 31L, 31L, 31L, 31L, 31L, 31L,
31L, 31L, 31L, 31L, 32L, 32L, 32L, 32L, 32L, 32L, 32L, 32L, 32L,
32L, 32L, 32L, 32L, 32L, 32L, 32L, 33L, 33L, 33L, 33L, 33L, 33L,
33L, 33L, 33L, 33L, 33L, 33L, 33L, 33L, 33L, 33L, 33L, 34L, 34L,
34L, 34L, 34L, 34L, 34L, 34L, 34L, 34L, 34L, 34L, 34L, 34L, 34L,
34L, 34L, 35L, 35L, 35L, 35L, 35L, 35L, 35L, 35L, 35L, 35L, 35L,
35L, 35L, 35L, 35L, 36L, 36L, 36L, 36L, 36L, 36L, 36L, 36L, 36L,
36L, 36L, 36L, 36L, 36L, 36L, 36L, 37L, 37L, 37L, 37L, 37L, 37L,
37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 38L, 38L,
38L, 38L, 38L, 38L, 38L, 38L, 38L, 38L, 38L, 38L, 38L, 38L, 38L,
38L, 39L, 39L, 39L, 39L, 39L, 39L, 39L, 39L, 39L, 39L, 39L, 39L,
39L, 39L, 39L, 39L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L,
40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 41L, 41L, 41L, 41L,
41L, 41L, 41L, 41L, 41L, 41L, 41L, 41L, 41L, 41L, 41L, 42L, 42L,
42L, 42L, 42L, 42L, 42L, 42L, 42L, 42L, 42L, 42L, 42L, 42L, 42L,
43L, 43L, 43L, 43L, 43L, 43L, 43L, 43L, 43L, 43L, 43L, 43L, 43L,
43L, 43L, 43L, 44L, 44L, 44L, 44L, 44L, 44L, 44L, 44L, 44L, 44L,
44L, 44L, 44L, 44L, 44L, 44L, 45L, 45L, 45L, 45L, 45L, 45L, 45L,
45L, 45L, 45L, 45L, 45L, 45L, 45L, 45L, 45L, 45L, 46L, 46L, 46L,
46L, 46L, 46L, 46L, 46L, 46L, 46L, 46L, 46L, 46L, 46L, 46L, 46L,
47L, 47L, 47L, 47L, 47L, 47L, 47L, 47L, 47L, 47L, 47L, 47L, 47L,
47L, 47L, 47L, 48L, 48L, 48L, 48L, 48L, 48L, 48L, 48L, 48L, 48L,
48L, 48L, 48L, 48L, 48L, 48L, 48L, 48L, 49L, 49L, 49L, 49L, 49L,
49L, 49L, 49L, 49L, 49L, 49L, 49L, 49L, 49L, 49L, 49L, 49L, 50L,
50L, 50L, 50L, 50L, 50L, 50L, 50L, 50L, 50L, 50L, 50L, 50L, 50L,
50L)), groups = structure(list(.rows = structure(list(1L, 2L,
3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 13L, 14L, 15L,
16L, 17L, 18L, 19L, 20L, 21L, 22L, 23L, 24L, 25L, 26L, 27L,
28L, 29L, 30L, 31L, 32L, 33L, 34L, 35L, 36L, 37L, 38L, 39L,
40L, 41L, 42L, 43L, 44L, 45L, 46L, 47L, 48L, 49L, 50L, 51L,
52L, 53L, 54L, 55L, 56L, 57L, 58L, 59L, 60L, 61L, 62L, 63L,
64L, 65L, 66L, 67L, 68L, 69L, 70L, 71L, 72L, 73L, 74L, 75L,
76L, 77L, 78L, 79L, 80L, 81L, 82L, 83L, 84L, 85L, 86L, 87L,
88L, 89L, 90L, 91L, 92L, 93L, 94L, 95L, 96L, 97L, 98L, 99L,
100L, 101L, 102L, 103L, 104L, 105L, 106L, 107L, 108L, 109L,
110L, 111L, 112L, 113L, 114L, 115L, 116L, 117L, 118L, 119L,
120L, 121L, 122L, 123L, 124L, 125L, 126L, 127L, 128L, 129L,
130L, 131L, 132L, 133L, 134L, 135L, 136L, 137L, 138L, 139L,
140L, 141L, 142L, 143L, 144L, 145L, 146L, 147L, 148L, 149L,
150L, 151L, 152L, 153L, 154L, 155L, 156L, 157L, 158L, 159L,
160L, 161L, 162L, 163L, 164L, 165L, 166L, 167L, 168L, 169L,
170L, 171L, 172L, 173L, 174L, 175L, 176L, 177L, 178L, 179L,
180L, 181L, 182L, 183L, 184L, 185L, 186L, 187L, 188L, 189L,
190L, 191L, 192L, 193L, 194L, 195L, 196L, 197L, 198L, 199L,
200L, 201L, 202L, 203L, 204L, 205L, 206L, 207L, 208L, 209L,
210L, 211L, 212L, 213L, 214L, 215L, 216L, 217L, 218L, 219L,
220L, 221L, 222L, 223L, 224L, 225L, 226L, 227L, 228L, 229L,
230L, 231L, 232L, 233L, 234L, 235L, 236L, 237L, 238L, 239L,
240L, 241L, 242L, 243L, 244L, 245L, 246L, 247L, 248L, 249L,
250L, 251L, 252L, 253L, 254L, 255L, 256L, 257L, 258L, 259L,
260L, 261L, 262L, 263L, 264L, 265L, 266L, 267L, 268L, 269L,
270L, 271L, 272L, 273L, 274L, 275L, 276L, 277L, 278L, 279L,
280L, 281L, 282L, 283L, 284L, 285L, 286L, 287L, 288L, 289L,
290L, 291L, 292L, 293L, 294L, 295L, 296L, 297L, 298L, 299L,
300L, 301L, 302L, 303L, 304L, 305L, 306L, 307L, 308L, 309L,
310L, 311L, 312L, 313L, 314L, 315L, 316L, 317L, 318L, 319L,
320L, 321L, 322L, 323L, 324L, 325L, 326L, 327L, 328L, 329L,
330L, 331L, 332L, 333L, 334L, 335L, 336L, 337L, 338L, 339L,
340L, 341L, 342L, 343L, 344L, 345L, 346L, 347L, 348L, 349L,
350L, 351L, 352L, 353L, 354L, 355L, 356L, 357L, 358L, 359L,
360L, 361L, 362L, 363L, 364L, 365L, 366L, 367L, 368L, 369L,
370L, 371L, 372L, 373L, 374L, 375L, 376L, 377L, 378L, 379L,
380L, 381L, 382L, 383L, 384L, 385L, 386L, 387L, 388L, 389L,
390L, 391L, 392L, 393L, 394L, 395L, 396L, 397L, 398L, 399L,
400L, 401L, 402L, 403L, 404L, 405L, 406L, 407L, 408L, 409L,
410L, 411L, 412L, 413L, 414L, 415L, 416L, 417L, 418L, 419L,
420L, 421L, 422L, 423L, 424L, 425L, 426L, 427L, 428L, 429L,
430L, 431L, 432L, 433L, 434L, 435L, 436L, 437L, 438L, 439L,
440L, 441L, 442L, 443L, 444L, 445L, 446L, 447L, 448L, 449L,
450L, 451L, 452L, 453L, 454L, 455L, 456L, 457L, 458L, 459L,
460L, 461L, 462L, 463L, 464L, 465L, 466L, 467L, 468L, 469L,
470L, 471L, 472L, 473L, 474L, 475L, 476L, 477L, 478L, 479L,
480L, 481L, 482L, 483L, 484L, 485L, 486L, 487L, 488L, 489L,
490L, 491L, 492L, 493L, 494L, 495L, 496L, 497L, 498L, 499L,
500L, 501L, 502L, 503L, 504L, 505L, 506L, 507L, 508L, 509L,
510L, 511L, 512L, 513L, 514L, 515L, 516L, 517L, 518L, 519L,
520L, 521L, 522L, 523L, 524L, 525L, 526L, 527L, 528L, 529L,
530L, 531L, 532L, 533L, 534L, 535L, 536L, 537L, 538L, 539L,
540L, 541L, 542L, 543L, 544L, 545L, 546L, 547L, 548L, 549L,
550L, 551L, 552L, 553L, 554L, 555L, 556L, 557L, 558L, 559L,
560L, 561L, 562L, 563L, 564L, 565L, 566L, 567L, 568L, 569L,
570L, 571L, 572L, 573L, 574L, 575L, 576L, 577L, 578L, 579L,
580L, 581L, 582L, 583L, 584L, 585L, 586L, 587L, 588L, 589L,
590L, 591L, 592L, 593L, 594L, 595L, 596L, 597L, 598L, 599L,
600L, 601L, 602L, 603L, 604L, 605L, 606L, 607L, 608L, 609L,
610L, 611L, 612L, 613L, 614L, 615L, 616L, 617L, 618L, 619L,
620L, 621L, 622L, 623L, 624L, 625L, 626L, 627L, 628L, 629L,
630L, 631L, 632L, 633L, 634L, 635L, 636L, 637L, 638L, 639L,
640L, 641L, 642L, 643L, 644L, 645L, 646L, 647L, 648L, 649L,
650L, 651L, 652L, 653L, 654L, 655L, 656L, 657L, 658L, 659L,
660L, 661L, 662L, 663L, 664L, 665L, 666L, 667L, 668L, 669L,
670L, 671L, 672L, 673L, 674L, 675L, 676L, 677L, 678L, 679L,
680L, 681L, 682L, 683L, 684L, 685L, 686L, 687L, 688L, 689L,
690L, 691L, 692L, 693L, 694L, 695L, 696L, 697L, 698L, 699L,
700L, 701L, 702L, 703L, 704L, 705L, 706L, 707L, 708L, 709L,
710L, 711L, 712L, 713L, 714L, 715L, 716L, 717L, 718L, 719L,
720L, 721L, 722L, 723L, 724L, 725L, 726L, 727L, 728L, 729L,
730L, 731L, 732L, 733L, 734L, 735L, 736L, 737L, 738L, 739L,
740L, 741L, 742L, 743L, 744L, 745L, 746L, 747L, 748L, 749L,
750L, 751L, 752L, 753L, 754L, 755L, 756L, 757L, 758L, 759L,
760L, 761L, 762L, 763L, 764L, 765L, 766L, 767L, 768L, 769L,
770L, 771L, 772L, 773L, 774L, 775L, 776L, 777L, 778L, 779L,
780L, 781L, 782L, 783L, 784L, 785L, 786L, 787L, 788L, 789L,
790L, 791L, 792L, 793L, 794L, 795L, 796L, 797L, 798L, 799L,
800L, 801L, 802L, 803L), ptype = integer(0), class = c("vctrs_list_of",
"vctrs_vctr", "list"))), row.names = c(NA, -803L), class = c("tbl_df",
"tbl", "data.frame")), row.names = c(NA, -803L), class = c("rowwise_df",
"tbl_df", "tbl", "data.frame"))
Upvotes: 0
Views: 217
Reputation: 50738
ggplot2
does recognise alpha
values less than 0.1.
For example:
ggplot(data = subset(play, !is.na(y)), aes(x = -x, y = y, group = RunID)) +
geom_smooth(method = "loess", linetype = 0, alpha = 0.01) +
scale_x_reverse() +
theme_minimal()
produces
Only when you use an alpha transparency scale through an aesthetic, values are mapped to alpha values in the interval [0.1, 1].
Upvotes: 1