Reputation: 302
I have the following dataframe where diff_days
is the difference between one row and the previous row
+----------+--------+---------+
| fx_date| col_1 |diff_days|
+----------+--------+---------+
|2020-01-05| A| null|
|2020-01-09| B| 4|
|2020-01-11| C| 2|
+----------+--------+---------+
I want to get a dataframe adding rows with missing dates and replicated values of col_1
related to the first row.
It should be:
+----------+--------+
| fx_date| col_1 |
+----------+--------+
|2020-01-05| A|
|2020-01-06| A|
|2020-01-07| A|
|2020-01-08| A|
|2020-01-09| B|
|2020-01-10| B|
|2021-01-11| C|
+----------+--------+
Upvotes: 2
Views: 71
Reputation: 32700
You can use lag
+ sequence
functions to generate the dates between previous and current row dates, then explode
the list like this:
from pyspark.sql import functions as F, Window
df1 = df.withColumn(
"previous_dt",
F.date_add(F.lag("fx_date", 1).over(Window.orderBy("fx_date")), 1)
).withColumn(
"fx_date",
F.expr("sequence(coalesce(previous_dt, fx_date), fx_date, interval 1 day)")
).withColumn(
"fx_date",
F.explode("fx_date")
).drop("previous_dt", "diff_days")
df1.show()
#+----------+-----+
#| fx_date|col_1|
#+----------+-----+
#|2020-01-05| A|
#|2020-01-06| B|
#|2020-01-07| B|
#|2020-01-08| B|
#|2020-01-09| B|
#|2020-01-10| C|
#|2020-01-11| C|
#+----------+-----+
Upvotes: 2