Reputation: 29
If I have a MxN numpy array denoted arr, I wish to index over all elements and adjust the values like so
for m in range(arr.shape[0]):
for n in range(arr.shape[1]):
arr[m, n] += x**2 * np.cos(m) * np.sin(n)
Where x is a random float.
Is there a way to broadcast this over the entire array without needing to loop? Thus, speeding up the run time.
Upvotes: 1
Views: 323
Reputation: 231395
In [156]: arr = np.ones((2, 3))
Replace the range
with arange
:
In [157]: m, n = np.arange(arr.shape[0]), np.arange(arr.shape[1])
And change the first array to (2,1) shape. A (2,1) array broadcasts with a (3,) to produce a (2,3) result.
In [158]: A = 0.23**2 * np.cos(m[:, None]) * np.sin(n)
In [159]: A
Out[159]:
array([[0. , 0.04451382, 0.04810183],
[0. , 0.02405092, 0.02598953]])
In [160]: arr + A
Out[160]:
array([[1. , 1.04451382, 1.04810183],
[1. , 1.02405092, 1.02598953]])
The meshgrid suggested in the accepted answer does the same thing:
In [161]: np.meshgrid(m, n, sparse=True, indexing="ij")
Out[161]:
[array([[0],
[1]]),
array([[0, 1, 2]])]
This broadcasting may be clearer with:
In [162]: m, n
Out[162]: (array([0, 1]), array([0, 1, 2]))
In [163]: m[:, None] * 10 + n
Out[163]:
array([[ 0, 1, 2],
[10, 11, 12]])
Upvotes: 0
Reputation: 19
You can use nested generators of two-dimensional arrays:
import numpy as np
from random import random
x = random()
n, m = 10,20
arr = [[x**2 * np.cos(2*np.pi*j) * np.sin(2*np.pi*i) for j in range(m)] for i in range(n)]
Upvotes: 0
Reputation: 1293
You are just adding zeros, because sin(2*pi*k) = 0
for integer k
.
However, if you want to vectorize this, the function np.meshgrid
could help you.
Check the following example, where I removed the 2 pi
in the trigonometric functions to add something unequal zero.
x = 2
arr = np.arange(12, dtype=float).reshape(4, 3)
n, m = np.meshgrid(np.arange(arr.shape[1]), np.arange(arr.shape[0]), sparse=True)
arr += x**2 * np.cos(m) * np.sin(n)
arr
Edit: use the sparse argument to reduce memory consumption.
Upvotes: 1