Reputation: 399
I have the following code that selects 4 rows of iris 1000x, and takes the mean of each 4 row sample:
library(dplyr)
iris<- iris
storage<- list()
counter<- 0
for (i in 1:1000) {
# sample 3 randomly selected transects 100 time
tempsample<- iris[sample(1:nrow(iris), 4, replace=F),]
storage[[i]]=tempsample
counter<- counter+1
print(counter)
}
# Unpack results into dataframe
results<- do.call(rbind, storage)
View(results)
results_2<- as.data.frame(results)
results_2<- results_2 %>% mutate(Aggregate = rep(seq(1,ceiling(nrow(results_2)/4)),each = 4))
# View(results_2)
final_results<- aggregate(results_2[,1:4], list(results_2$Aggregate), mean)
# View(final_results)
I want to calculate the bias of each column in relation to their true population parameter. For example using SimDesign
's bias()
:
library(SimDesign)
(bias(final_results[,2:5], parameter=c(5,3,2,1), type='relative'))*100
In this code, the values of parameter are hypothetical true pop. values of each column in the dataframe. I want to do this process 100x to get a distribution of bias estimates for each variable in the dataframe. However, I'm not sure how to fit all of this into a for loop (what I think would be the way to go) so the final output is a dataframe with 100 rows of bias measurements for each iris variable.
Any help with this would be greatly appreciated.
#------------------------------
Update
Trying to run the same code for a stratified sample as opposed to a random sample gives me the following error: *Error in [.data.table
(setDT(copy(iris)), as.vector(sapply(1:1000, function(X) stratified(iris, :
i is invalid type (matrix). Perhaps in future a 2 column matrix could return a list of elements of DT * I think this might be related to setDT?
This is a result of the following code:
do.call(rbind,lapply(1:100, function(x) {
bias(
setDT(copy(iris))[as.vector(sapply(1:1000, function(X) stratified(iris,group="Species", size=1)))][
, lapply(.SD, mean), by=rep(c(1:1000),4), .SDcols=c(1:4)][,c(2:5)],
parameter=c(5,3,2,1),
type='relative'
)
}))
I looked into using the following code which was suggested:
get_samples <- function(n, sampsize=4) {
rbindlist(lapply(1:n, function(x) {
splitstackshape::stratified(iris, group="Species",sampsize)[, id:=x] }))[
, lapply(.SD, mean), by=.(Species, id)] }
I think I understand what this function is doing (selecting 4 stratified rows of iris, taking the means of each column by species), but I'm not sure how to apply it to the original question of doing it (4*1000)*100 to test the bias (I'm very new at this so apologies if I'm missing something obvious).
Upvotes: 1
Views: 101
Reputation: 18595
Since you are using mutate
you may consider staying with tidyverse
.
map_df(1:1000, ~ sample_n(iris, 4, replace = FALSE)) %>%
glimpse() %>%
mutate(Aggregate_col = rep(seq(1, ceiling(n() / 4)), each = 4)) %>%
glimpse() %>%
select(starts_with("Sepal"),
starts_with("Petal"),
matches("Aggregate")) %>%
group_by(Aggregate_col) %>%
summarise(across(.cols = everything(), ~ mean(.x, na.rm = TRUE)))
Notes:
In the example below, your first loop is replaced by:
map_df(1:1000, ~ sample_n(iris, 4, replace = FALSE))
map_x
can be used to iterate over a list, or in this case an integer vector 1:1000
, if the only intention is to call the function repeatedly, and binding the results into a desired format, in this case a data.frame
.
You can exploit glimpse
while within the data transformation pipeline to avoid calling View
repeatedly
select
provides a readable way of selecting columns by name, or partial matches. This is usually safer method than selecting column by index while adding/removing variables
Upvotes: 1
Reputation: 24742
Here is one way to do that. I've made some minor changes to your code, and wrapped it in a function. Then, use lapply
over a sequence say 1:10
or 1:100
, each time running your function, and feeding the result to your bias
function from the SimDesign
package. Then row bind the resulting list
library(dplyr)
get_samples <- function(df, size=4, n=1000) {
storage<- list()
counter<- 0
for (i in 1:1000) {
tempsample<- df[sample(1:nrow(df), size, replace=F),]
storage[[i]]=tempsample
counter<- counter+1
}
results<- do.call(rbind, storage)
results_2<- as.data.frame(results)
results_2<- results_2 %>% mutate(Aggregate = rep(seq(1,ceiling(nrow(results_2)/size)),each = size))
final_results<- aggregate(results_2[,1:size], list(results_2$Aggregate), mean)
return(final_results)
}
iris=iris
replicates = lapply(1:10, function(x) {
result = get_samples(iris)
(bias(result[,2:5], parameter=c(5,3,2,1), type='relative'))*100
})
replicates = do.call(rbind, replicates)
Output:
Sepal.Length Sepal.Width Petal.Length Petal.Width
[1,] 41.50617 3.292500 86.77408 8.859333
[2,] 43.26058 2.763500 90.20758 10.825917
[3,] 43.46642 3.551750 90.11767 10.576250
[4,] 41.94683 2.970833 86.89625 8.817000
[5,] 42.08733 3.380917 86.78642 8.996667
[6,] 42.13050 2.942250 88.02983 9.707500
[7,] 43.07383 2.775500 89.04583 10.102083
[8,] 44.10192 2.895167 91.27208 11.188500
[9,] 41.29408 2.314750 87.59208 9.244333
[10,] 42.77450 2.781583 90.37342 10.789500
library(SimDesign)
library(data.table)
do.call(rbind,lapply(1:100, function(x) {
bias(
setDT(copy(iris))[as.vector(sapply(1:1000, function(X) sample(1:nrow(iris),4)))][
, lapply(.SD, mean), by=rep(c(1:1000),4), .SDcols=c(1:4)][,c(2:5)],
parameter=c(5,3,2,1),
type='relative'
)
}))
Upvotes: 1