Reputation:
I want to solve linear programming with Python. The model is:
Maximizing x1 + x2
S.t:
x1 + x2 <=1
0<= x1 , x2 <=1
So I tried this:
from gekko import GEKKO
model = GEKKO(remote=False)
x1 = model.Var(0.2 , lb=0 , ub=1)
x2 = model.Var(0.2 , lb=0 , ub=1)
model.Equation = (sum(x1 , x2) <=1)
model.Maximize(sum(x1 , x2))
But I got:
---------------------------------------------------------------------------
TypeError Traceback (most recent call last)
~\AppData\Local\Temp/ipykernel_8024/1372822120.py in <module>
6 x2 = model.Var(0.2 , lb=0 , ub=1)
7
----> 8 model.Equation = (sum(x1 , x2) <=1)
9
10 model.Maximize(sum(x1 , x2))
~\Anaconda3\envs\Python3.10\lib\site-packages\gekko\gk_variable.py in __getitem__(self, key)
78 return len(self.value)
79 def __getitem__(self,key):
---> 80 return self.value[key]
81 def __setitem__(self,key,value):
82 self.value[key] = value
~\Anaconda3\envs\Python3.10\lib\site-packages\gekko\gk_operators.py in __getitem__(self, key)
145
146 def __getitem__(self,key):
--> 147 return self.value[key]
148
149 def __setattr__(self, name, value):
TypeError: 'float' object is not subscriptable
Upvotes: 3
Views: 140
Reputation: 6285
As I mentioned in the comment section, simply changing sum(x1 , x2)
to x1 + x2
should solve the issue. Also, you should try Solving the model
with model.solve()
! so:
from gekko import GEKKO
model = GEKKO(remote=False)
x1 = model.Var(0.2 , lb=0 , ub=1)
x2 = model.Var(0.2 , lb=0 , ub=1)
model.Equation = (x1 + x2 <=1)
model.Maximize(x1 + x2)
model.solve()
If you want to know about the optimal solution and avoid the complete report of Gekko, you can set model.solve(disp=False)
and then try:
x1[0] , x2[0]
this gives me:
(1.0, 1.0)
Then whereas your objective function is x1 + x2
, You can get the optimal value of the objective function by:
x1[0] + x2[0]
>>> 2.0
Upvotes: 3