Reputation: 3
I have a pandas dataframe as shown below
id txn_id txn_type dr_cust_id dr_cust_acct dr_cust_name dr_cust_type cr_cust_id ... dept bank_user source stped status difference department_sla predicted_sla
0 1 FT123456 Fund Transfer 1234 1234567890 Vimal Retail 4321 ... FRONT OFFICE FO MAKER Mobile NSTP INITIATED 32 MET MET
1 2 FT123456 Fund Transfer 1234 1234567890 Vimal Retail 4321 ... FRONT OFFICE FO CHECKER Mobile NSTP INITIATED 32 MET MET
2 3 FT123456 Fund Transfer 1234 1234567890 Vimal Retail 4321 ... MIDDLE OFFICE MO MAKER Mobile NSTP INPROGRESS 32 MET MET
3 4 FT123456 Fund Transfer 1234 1234567890 Vimal Retail 4321 ... MIDDLE OFFICE MO CHECKER Mobile NSTP INPROGRESS 32 MET MET
4 5 FT123456 Fund Transfer 1234 1234567890 Vimal Retail 4321 ... BACK OFFICE BO MAKER Mobile NSTP COMPLETED 32 MET MET
Now I want this data in the following json format
{'id': 2111, 'txn_id': 'MC123456', 'txn_type': 'MANAGERS CHEQUE', 'dr_cust_id': 1234, 'dr_cust_acct': 1234567897, 'dr_cust_name': 'Vimal', 'dr_cust_type': 'HNI-VIP', 'cr_cust_id': 4321, 'cr_cust_acct': 987654321, 'cr_cust_name': 'Vivek', 'cr_cust_type': 'HNI-VIP', 'amount': 1046, 'currency': 'USD', 'txn_code': 'MC00001', 'remark': 'adkaDKA', 'txn_start_date_time': '2009-10-04 17:00:01', 'txn_end_date_time': '2009-10-04 19:45:01', 'dept': 'BACK OFFICE', 'bank_user': 'BO MAKER', 'source': 'IB', 'stped': 'NSTP', 'status': 'COMPLETED', 'difference': 165, 'department_sla': 'MET'}
{'id': 2112, 'txn_id': 'MC123456', 'txn_type': 'MANAGERS CHEQUE', 'dr_cust_id': 1234, 'dr_cust_acct': 1234567897, 'dr_cust_name': 'Vimal', 'dr_cust_type': 'HNI-VIP', 'cr_cust_id': 4321, 'cr_cust_acct': 987654321, 'cr_cust_name': 'Vivek', 'cr_cust_type': 'HNI-VIP', 'amount': 1047, 'currency': 'USD', 'txn_code': 'MC00001', 'remark': 'adkaDKA', 'txn_start_date_time': '2009-10-04 17:00:01', 'txn_end_date_time': '2009-10-04 19:45:01', 'dept': 'BACK OFFICE', 'bank_user': 'BO CHECKER', 'source': 'IB', 'stped': 'NSTP', 'status': 'COMPLETED', 'difference': 165, 'department_sla': 'MET'}
I tried different types of orient in order to get the desired format but none of them gave the required output. What should be done here?
Upvotes: 0
Views: 156
Reputation: 1
To Convert Pandas DataFrame To JSON Using orient = 'records'
Supose df
is your Pandas DataFrame you can create df2
which holds the structure required:
df2 = df.to_json(orient = 'records')
print(df2)
Upvotes: 0
Reputation: 164
Python offers a tool to dump a dict into a json, as long you can transform your DataFrame into a dict, this can be done easily.
Supose df
is your Pandas DataFrame:
import json
jsonparse=json.dumps(df.to_dict('records'))
Upvotes: 1