Reputation: 33
I'm trying to figure out how to perform a Merge or Join on a nested field in a DataFrame. Below is some example data:
df_all_groups = pd.read_json("""
[
{
"object": "group",
"id": "group-one",
"collections": [
{
"id": "111-111-111",
"readOnly": false
},
{
"id": "222-222-222",
"readOnly": false
}
]
},
{
"object": "group",
"id": "group-two",
"collections": [
{
"id": "111-111-111",
"readOnly": false
},
{
"id": "333-333-333",
"readOnly": false
}
]
}
]
""")
df_collections_with_names = pd.read_json("""
[
{
"object": "collection",
"id": "111-111-111",
"externalId": null,
"name": "Cats"
},
{
"object": "collection",
"id": "222-222-222",
"externalId": null,
"name": "Dogs"
},
{
"object": "collection",
"id": "333-333-333",
"externalId": null,
"name": "Fish"
}
]
""")
I'm trying to add the name
field from df_collections_with_names
to each df_all_groups['collections'][<index>]
by joining on df_all_groups['collections'][<index>].id
The output I'm trying to get to is:
[
{
"object": "group",
"id": "group-one",
"collections": [
{
"id": "111-111-111",
"readOnly": false,
"name": "Cats" // See Collection name was added
},
{
"id": "222-222-222",
"readOnly": false,
"name": "Dogs" // See Collection name was added
}
]
},
{
"object": "group",
"id": "group-two",
"collections": [
{
"id": "111-111-111",
"readOnly": false,
"name": "Cats" // See Collection name was added
},
{
"id": "333-333-333",
"readOnly": false,
"name": "Fish" // See Collection name was added
}
]
}
]
I've tried to use the merge
method, but can't seem to get it to run on the collections
nested field as I believe it's a series at that point.
Upvotes: 0
Views: 742
Reputation:
Here's one approach:
First convert the json string used to construct df_all_groups
(I named it all_groups
here) to a dictionary using json.loads
. Then use json_normalize
to contruct a DataFrame with it.
Then merge
the DataFrame constructed above with df_collections_with_names
; we have "names" column now.
The rest is constructing the desired dictionary from the result obtained above; groupby
+ apply(to_dict)
+ reset_index
+ to_dict
will fetch the desired outcome:
import json
out = (pd.json_normalize(json.loads(all_groups), ['collections'], ['object', 'id'], meta_prefix='_')
.merge(df_collections_with_names, on='id', suffixes=('','_'))
.drop(columns=['object','externalId']))
out = (out.groupby(['_object','_id']).apply(lambda x: x[['id','readOnly','name']].to_dict('records'))
.reset_index(name='collections'))
out.rename(columns={c: c.strip('_') for c in out.columns}).to_dict('records')
Output:
[{'object': 'group',
'id': 'group-one',
'collections': [{'id': '111-111-111', 'readOnly': False, 'name': 'Cats'},
{'id': '222-222-222', 'readOnly': False, 'name': 'Dogs'}]},
{'object': 'group',
'id': 'group-two',
'collections': [{'id': '111-111-111', 'readOnly': False, 'name': 'Cats'},
{'id': '333-333-333', 'readOnly': False, 'name': 'Fish'}]}]
Upvotes: 1