Reputation: 313
I have the following regression:
tal_lpm4 <- feols(tal ~ provtariff + provtariff*i(sex) + i(sex) + as.numeric(educ) + age + age^2| year + tinh,
data = employment0204,
vcov_cluster(~year + tinh),
weights = ~hhwt)
OLS estimation, Dep. Var.: tal
Observations: 332,147
Fixed-effects: year: 2, tinh: 61
Standard-errors: Clustered (year & tinh)
Estimate Std. Error t value Pr(>|t|)
provtariff 0.200287 0.101019 1.98266 0.297390
sex::Female 0.038688 0.003849 10.05185 0.063126 .
as.numeric(educ) 0.002093 0.000290 7.22092 0.087606 .
age 0.001084 0.000682 1.58972 0.357463
I(age^2) -0.000027 0.000014 -1.90659 0.307521
provtariff:sex::Male -0.139618 0.017293 -8.07366 0.078452 .
provtariff:sex::Female -0.216309 0.014045 -15.40086 0.041279 *
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
RMSE: 6.23738 Adj. R2: 0.036039
Within R2: 0.017567
I want to plot the marginal effect of provtariff
of each sex
. When I used the code
iplot(tal_lpm4)
the following plot is shown:
The Male
variable's coefficient is 0, even though it should be the provtariff
coefficient; whereas coefficient for Female
should be provtariff * sex
plus provtariff
.
Upvotes: 0
Views: 718
Reputation: 313
Turns out placement of the interaction term matters:
tal_lpm4 <- feols(tal ~ provtariff + provtariff + age + age^2 + i(sex, provtariff) + i(urban) +i(sex)| year + tinh,
data = employment0204,
vcov_cluster(~year + tinh),
weights = ~hhwt)
Gave me the desired outcome
Upvotes: 1