Reputation: 193
I have 2 Pydantic models (var1
and var2
). The input of the PostExample
method can receive data either for the first model or the second.
The use of Union
helps in solving this issue, but during validation it throws errors for both the first and the second model.
How to make it so that in case of an error in filling in the fields, validator errors are returned only for a certain model, and not for both at once? (if it helps, the models can be distinguished by the length of the field A).
main.py
@app.post("/PostExample")
def postExample(request: Union[schemas.var1, schemas.var2]):
result = post_registration_request.requsest_response()
return result
schemas.py
class var1(BaseModel):
A: str
B: int
C: str
D: str
class var2(BaseModel):
A: str
E: int
F: str
Upvotes: 19
Views: 26364
Reputation: 308
Pydantic has depricated parse_obj_as
and replaced it with TypeAdapter
. I modified @yaakov-bressler great answer. It's also now a lot faster which I presume is due to improvements from Pydantic.
# %%
import json
from typing import Annotated, Literal, Union
from pydantic import BaseModel, Field, TypeAdapter, parse_obj_as
# %%
class Model1(BaseModel):
key: Literal["Model1", "Model1A"]
value: int
class Model2(BaseModel):
key: Literal["Model2", "Model2A"]
value2: int
name: str
# %%
ValidatorModel = Annotated[Union[Model1, Model2], Field(discriminator="key")]
# %%
adaptor = TypeAdapter(ValidatorModel)
# %% JSON Examples
model1 = {"key": "Model1", "value": 1}
model2 = {"key": "Model2", "value2": 2, "name": "name"}
model1a = {"key": "Model1A", "value": 23}
# %% Parse JSON New Way
%%timeit
for model in [model1, model2, model1a]:
x = adaptor.validate_python(model)
# 2.06 µs ± 25.1 ns per loop (mean ± std. dev. of 7 runs, 100,000 loops each)
# %% Deprecated way
%%timeit
for model in [model1, model2, model1a]:
x = parse_obj_as(ValidatorModel, model)
# 669 µs ± 43.1 µs per loop (mean ± std. dev. of 7 runs, 1,000 loops each)
Upvotes: 5
Reputation: 34045
You could use Discriminated Unions (credits to @larsks for mentioning that in the comments). Setting a discriminated union, "validation is faster since it is only attempted against one model", as well as "only one explicit error is raised in case of failure". Working example is given below.
Another approach would be to attempt parsing the models (based on a discriminator you pass as query/path param), as described in this answer (Option 1).
app.py
import schemas
from fastapi import FastAPI, Body
from typing import Union
app = FastAPI()
@app.post("/")
def submit(item: Union[schemas.Model1, schemas.Model2] = Body(..., discriminator='model_type')):
return item
schemas.py
from typing import Literal
from pydantic import BaseModel
class Model1(BaseModel):
model_type: Literal['m1']
A: str
B: int
C: str
D: str
class Model2(BaseModel):
model_type: Literal['m2']
A: str
E: int
F: str
Test inputs - outputs
#1 Successful Response #2 Validation error #3 Validation error
# Request body # Request body # Request body
{ { {
"model_type": "m1", "model_type": "m1", "model_type": "m2",
"A": "string", "A": "string", "A": "string",
"B": 0, "C": "string", "C": "string",
"C": "string", "D": "string" "D": "string"
"D": "string" } }
}
# Server response # Server response # Server response
200 { {
"detail": [ "detail": [
{ {
"loc": [ "loc": [
"body", "body",
"Model1", "Model2",
"B" "E"
], ],
"msg": "field required", "msg": "field required",
"type": "value_error.missing" "type": "value_error.missing"
} },
] {
} "loc": [
"body",
"Model2",
"F"
],
"msg": "field required",
"type": "value_error.missing"
}
]
}
Upvotes: 20
Reputation: 12008
You would need to:
parse_obj_as()
This approach is demonstrated below:
Credit to @Chris for his previous answer, of which this solution is based on.
from typing import Literal, Union, Annotated
from pydantic import BaseModel, Field, parse_obj_as
class Model1(BaseModel):
model_type: Literal['m1']
A: str
B: int
C: str
D: str
class Model2(BaseModel):
model_type: Literal['m2']
A: str
E: int
F: str
# Create a new model to represent the discriminated union
ValidModel = Annotated[Union[Model1, Model2], Field(discriminator='model_type')]
# Sample data
raw_data = {
"model_type": "m1",
"A": "foo",
"B": 1,
"C": "bar",
"D": "zap"
}
# Parse as the correct model based on `model_type`
my_model = parse_obj_as(ValidModel, raw_data)
print(type(my_model)) # <class '__main__.Model1'>
Upvotes: 6