Reputation: 851
I have a PySpark dataframe where I have several measures for (key1, key2, key3, date)
set. That is:
+-----+-----+-----+----------+-----+-----+
| key1| key2| key3| date|val_1|val_2|
+-----+-----+-----+----------+-----+-----+
|pk1 |name1| VA|2022-03-06| 0| 3|
|pk1 |name1| VA|2022-03-07| 2| 4|
|pk1 |name1| VA|2022-03-09| 3| 4|
|pk2 |name2| NC|2022-03-06| 4| 1|
|pk2 |name2| NC|2022-03-08| 2| 6|
|pk2 |name2| NC|2022-03-09| 1| 4|
+-----+-----+-----+----------+-----+-----+
This table has about 5600 (key1, key2, key3)
unique tuples. I want to fill in the dates to make this a 1-day sequence for all key tuples. The resulting table should be:
+-----+-----+-----+----------+-----+-----+
| key1| key2| key3| date|val_1|val_2|
+-----+-----+-----+----------+-----+-----+
|pk1 |name1| VA|2022-03-06| 0| 3|
|pk1 |name1| VA|2022-03-07| 2| 4|
|pk1 |name1| VA|2022-03-08| NA| NA|
|pk1 |name1| VA|2022-03-09| 3| 4|
|pk2 |name2| NC|2022-03-06| 4| 1|
|pk2 |name2| NC|2022-03-07| NA| NA|
|pk2 |name2| NC|2022-03-08| 2| 6|
|pk2 |name2| NC|2022-03-09| 1| 4|
+-----+-----+-----+----------+-----+-----+
Here is what I've tried:
from pyspark.sql import functions as F
minDate = df.select(F.min("date")).first()["min(date)"]
maxDate = df.select(F.max("date")).first()["max(date)"]
dateList = ",".join([str(maxDate - datetime.timedelta(days=x)) for x in range((maxDate - minDate).days + 1)])
df = df.select("key1", "key2", "key3", F.explode(F.split(dateList, ",")).alias("date"))
I pulled this solution from this SO answer: How to expand out a Pyspark dataframe based on column?. My plan was to construct this "full" (key1, key2, key3, date)
dataframe and then join it with the original dataframe. The error I'm getting is:
You're referencing the column `2022-03-20,2022-03-19,2022-03-18,2022-03-17,2022-03-16,2022-03-15,2022-03-14,2022-03-13,2022-03-12,2022-03-11,2022-03-10,2022-03-09,2022-03-08,2022-03-07,2022-03-06`, but it is missing from the schema.
Upvotes: 1
Views: 1480
Reputation: 851
I already accepted wwnde's answer, but I figured I'd post what I was able to successfully implement before I used their answer.
minDate = df.select(F.min("date")).first()["min(date)"]
maxDate = df.select(F.max("date")).first()["max(date)"]
dateList = [maxDate - datetime.timedelta(days=x) for x in range((maxDate - minDate).days + 1)]
fullDateDf = (
df
.select(["key1", "key2", "key3"])
.dropDuplicates()
.withColumn("date", F.array([F.lit(x) for x in dateList]))
)
fullDateDf = fullDateDf.select(
[
"key1",
"key2",
"key3",
F.explode(F.col("date")).alias("date")
]
)
df = (
df
.join(
fullDateDf,
on=["key1", "key2", "key3", "date"],
how="outer"
)
)
I think wwnde's answer is more concise, but I figured I'd share another way of doing this.
Upvotes: 0
Reputation: 26676
df=df.withColumn('date', to_date('date'))#format date if string
new = (df.groupby('key1','key2','key3').agg(expr('max(date)').alias('max_date'),expr('min(date)').alias('min_date'))#Compute max and min date for use in generating date range
.withColumn('date',expr("explode(sequence(min_date,max_date,interval 1 day))"))#Use sequence to compute range
.drop('max_date','min_date')#drop unwanted columns
)
#Join new df back to df
df.join(new, how='right', on=['key1', 'key2', 'key3', 'date']).show()
+----+-----+----+----------+-----+-----+
|key1| key2|key3| date|val_1|val_2|
+----+-----+----+----------+-----+-----+
| pk1|name1| VA|2022-03-06| 0| 3|
| pk1|name1| VA|2022-03-07| 2| 4|
| pk1|name1| VA|2022-03-08| null| null|
| pk1|name1| VA|2022-03-09| 3| 4|
| pk2|name2| NC|2022-03-06| 4| 1|
| pk2|name2| NC|2022-03-07| null| null|
| pk2|name2| NC|2022-03-08| 2| 6|
| pk2|name2| NC|2022-03-09| 1| 4|
+----+-----+----+----------+-----+-----+
Upvotes: 3
Reputation: 69
It should be:
df = df.select("key1", "key2", "key3", F.explode(F.split(F.lit(dateList), ",")).alias("date"))
Use lit()
to create a Column of literal value. By the way, you shoud drop duplicates by "key1", "key2", "key3"
first.
Upvotes: -1