Reputation: 47
my dataframe is structured:
ACTIVITY 2014 2015 2016 2017 2018
WALK 198 501 485 394 461
RUN 187 446 413 371 495
JUMP 45 97 88 103 78
JOG 1125 2150 2482 2140 2734
SLIDE 1156 2357 2530 2044 1956
my visualization goal: facetgrid of bar charts showing the percentage points over time, with each bar either positive/negative depending on percentage change of the year of course. each facet is an INCIDENT type, if that makes sense. for example, one facet would be a barplot of WALK, the other would be RUN, and so on and so forth. x-axis would be time of course (2014, 2015, 2016, etc) and y-axis would be the value (%change) from each year.
in my analysis, i added pct_change columns for every year except the baseline 2014 using simple pct_change() function that takes in two columns from df
and spits back out a new calculated column:
df['%change_2015'] = pct_change(df['2014'],df['2015'])
df['%change_2016'] = pct_change(df['2015'],df['2016'])
... etc.
so with these new columns, i think i have the elements i need for my data visualization goal. how can i do it with seaborn facetgrids? specifically bar plots?
augmented dataframe (slice view):
ACTIVITY 2014 2015 2016 2017 2018 %change_2015 %change_2016
WALK 198 501 485 394 461 153.03 -3.19
RUN 187 446 413 371 495 xyz xyz
JUMP 45 97 88 103 78 xyz xyz
i tried reading through the seaborn documentation but i was having trouble understanding the configurations: https://seaborn.pydata.org/generated/seaborn.FacetGrid.html
is the problem the way my dataframe is ordered and structured? i hope all of that made sense. i appreciate any help with this.
Upvotes: 0
Views: 199
Reputation: 4543
Use:
import pandas as pd
cols = 'ACTIVITY', '%change_2015', '%change_2016'
data = [['Jump', '10.1', '-3.19'],['Run', '9.35', '-3.19'], ['Run', '4.35', '-1.19']]
df = pd.DataFrame(data, columns = cols)
dfm = pd.melt(df, id_vars=['ACTIVITY'], value_vars=['%change_2015', '%change_2016'])
dfm['value'] = dfm['value'].astype(float)
import seaborn as sns
g = sns.FacetGrid(dfm, col='variable')
g.map(sns.barplot, 'ACTIVITY', "value")
Output:
Based on your comment:
g = sns.FacetGrid(dfm, col='ACTIVITY')
g.map(sns.barplot, 'variable', "value")
Output:
Upvotes: 1