Reputation: 43
I just learned about variadic templates in C++. I implemented it, but I want to know, can it do the following?
If I want a function with a variable number of arguments, I could do that:
template <typename... Ts>
f(Ts... args);
But I lose type safety (I don't know the type of the arguments).
What if I know my function needs only float
as arguments? I want to make sure at compile-time that every argument is the type I want.
So these are my questions:
Is there a way to force a certain type with variadic templates (something like this)?
template <float... Fs>
f(Fs... args); // unlimited number of arguments but only float
If not, is there a way to check it at compile-time? static_assert(std::is_same<A,B>)
is fine in most cases, but it doesn't work for templated classes (like for my use case):
template <typename T, uint16_t dimension>
class Vector
{
template <typename... Ts>
Vector(Ts... args)
{
static_assert(sizeof...(args) == dimension);
static_assert(std::is_same_v<Ts..., T>()); //doesn't work because Ts will
//develop into a lot of template
//arguments. Just putting Ts doesn't
//work either.
}
}
Ps: Yes I could use std::vector
or std::array
as arguments, but that's not really the point. Plus, I want to keep the beautiful Vector(2.0, 1.0, 0.0)
syntax, not using curly braces.
Upvotes: 4
Views: 186
Reputation: 217075
In the case of fixed vector as in your case, there is an alternative with std::index sequence
:
// helper for folding
template <typename T, std::size_t /*ignored*/>
using always_t = T;
template <typename T, typename Seq>
class VectorImpl;
template <typename T, std::size_t... Is>
class VectorImpl<T, std::index_sequence<Is...>>
{
public:
VectorImpl(always_t<T, Is>... args); // equivalent to VectorImpl(T arg1, T arg2, ..)
// ...
};
template <typename T, std::size_t N>
using Vector = VectorImpl<T, std::make_index_sequence<N>>;
Upvotes: 0
Reputation: 21
template <typename T, uint16_t dimension>
class MyVector
{
public:
template <typename... Ts>
MyVector(Ts... args)
{
static_assert(sizeof...(args) == dimension);
static_assert((std::is_same<T,Ts>::value && ...) );
}
};
Can also use the unary right fold expression as provided in C++17 https://en.cppreference.com/w/cpp/language/fold
This essentially does
std::is_same<T,Ts_1>::value && ( std::is_same<T,Ts_2>::value && ... std::is_same<T,Ts_n>::value ) ...)
And works also when the parameter pack Ts is empty. Quote from the reference link:
" Logical AND (&&). The value for the empty pack is true"
Upvotes: 2
Reputation: 310910
If the compiler supports C++ 20 then you can write for example
#include <type_traits>
template <typename T, uint16_t dimension>
class Vector
{
public:
template <typename... Ts>
Vector( Ts &&... args ) requires ( sizeof...( args ) == dimension ) && std::conjunction_v<std::is_same<T, std::decay_t<Ts>>...>
{
}
};
//...
Vector<float, 5> v( 1.1f, 2.2f, 3.3f, 4.4f, 5.5f );
Or as @HolyBlackCat wrote in a comment you may also write
template <typename T, uint16_t dimension>
class Vector
{
public:
template <typename... Ts>
Vector( std::same_as<T> auto ...args ) requires( sizeof...( args ) == dimension )
{
}
};
Upvotes: 1