Reputation: 79
I am trying to calculate the f1 score for a multi-class classification problem using the Cifar10 dataset. I am importing f1 metirics from the sklearn library. However I keep getting the following error message:
ValueError: Classification metrics can't handle a mix of multiclass and continuous-multioutput targets
Below is my function for testing the model on my validation set. Would someone be able to explain how to calculate f1 when performing multi-class classification. I am getting quite confused.
@torch.no_grad()
def valid_function(model, optimizer, val_loader):
model.eval()
val_loss = 0.0
val_accu = 0.0
f_one = []
for i, (x_val, y_val) in enumerate(val_loader):
x_val, y_val = x_val.to(device), y_val.to(device)
val_pred = model(x_val)
loss = criterion(val_pred, y_val)
val_loss += loss.item()
val_accu += accuracy(val_pred, y_val)
f_one.append(f1_score(y_val.cpu(), val_pred.cpu()))
val_loss /= len(val_loader)
val_accu /= len(val_loader)
print('Val Loss: %.3f | Val Accuracy: %.3f'%(val_loss,val_accu))
return val_loss, val_accu
Upvotes: 1
Views: 8683
Reputation: 76
The problem is here:
val_pred = model(x_val)
You need to convert how you load the model. For example in your case:
val_pred = np.argmax(model.predict(x_val), axis=-1)
Upvotes: 5