Reputation: 11
regressor.add(LSTM(units = 60, activation = 'relu', return_sequences = True, input_shape = (X_train.shape[1], 5)))
regressor.add(Dropout(0.2))
regressor.add(LSTM(units = 70, activation = 'relu', return_sequences = True, input_shape = (X_train.shape[1], 5)))
regressor.add(Dropout(0.2))
regressor.add(LSTM(units = 90, activation = 'relu', return_sequences = True, input_shape = (X_train.shape[1], 5)))
regressor.add(Dropout(0.2))
regressor.add(LSTM(units = 140, activation = 'relu', return_sequences = True, input_shape = (X_train.shape[1], 5)))
regressor.add(Dropout(0.2))
regressor.add(Dense(units =1))
regressor.summary()
regressor.compile(optimizer = 'adam', loss='mean_absolute_error')
regressor.fit(X_train, Y_train, epochs = 20, batch_size =50)[enter image description here][1]
On running this code ; the value error raised while I was preparing my model for prediction . Help me to rectify it
Epoch 1/20
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
<ipython-input-26-535f5f5c29a7> in <module>()
----> 1 regressor.fit(X_train, Y_train, epochs = 20, batch_size =50)
1 frames
/usr/local/lib/python3.7/dist-packages/keras/utils/traceback_utils.py in error_handler(*args, **kwargs)
65 except Exception as e: # pylint: disable=broad-except
66 filtered_tb = _process_traceback_frames(e.__traceback__)
---> 67 raise e.with_traceback(filtered_tb) from None
68 finally:
69 del filtered_tb
/usr/local/lib/python3.7/dist-packages/tensorflow/python/framework/func_graph.py in autograph_handler(*args, **kwargs)
1145 except Exception as e: # pylint:disable=broad-except
1146 if hasattr(e, "ag_error_metadata"):
-> 1147 raise e.ag_error_metadata.to_exception(e)
1148 else:
1149 raise
ValueError: in user code:
File "/usr/local/lib/python3.7/dist-packages/keras/engine/training.py", line 1021, in train_function *
return step_function(self, iterator)
File "/usr/local/lib/python3.7/dist-packages/keras/engine/training.py", line 1010, in step_function **
outputs = model.distribute_strategy.run(run_step, args=(data,))
File "/usr/local/lib/python3.7/dist-packages/keras/engine/training.py", line 1000, in run_step **
outputs = model.train_step(data)
File "/usr/local/lib/python3.7/dist-packages/keras/engine/training.py", line 859, in train_step
y_pred = self(x, training=True)
File "/usr/local/lib/python3.7/dist-packages/keras/utils/traceback_utils.py", line 67, in error_handler
raise e.with_traceback(filtered_tb) from None
File "/usr/local/lib/python3.7/dist-packages/keras/engine/input_spec.py", line 264, in assert_input_compatibility
raise ValueError(f'Input {input_index} of layer "{layer_name}" is '
ValueError: Input 0 of layer "sequential" is incompatible with the layer: expected shape=(None, 60, 5), found shape=(None, 60, 7)
On running the code ; I came across this error on my python interpretor. Let me know the correct compatibility!
Upvotes: 1
Views: 776
Reputation: 1651
The error pretty much says it all. The first LSTM layer in your model expects a batch of time series, each having 60 timesteps and 5 features per timestep, but somehow you fed it a batch of time series each having 60 steps and 7 features. You might check your X_train.shape[2]
to see if it is 7.
Also, the way you're using the output of LSTM layers is incorrect. You might want to go through this answer and official tensorflow documentation to see what are the outputs of a LSTM layer with return_sequences
set to True
.
Upvotes: 1