Reputation: 730
There are multiple questions exist on this area, however I can not use them to solve my question. I have a data sample and I want to create the confidence interval for its curve. Here, I provide a simple example:
import numpy as np
%matplotlib inline
import matplotlib.pyplot as plt
mean, lower, upper = [],[],[]
ci = 0.2
for i in range (20):
a = np.random.rand(100) # this is the output
MEAN = np.mean(a)
mean.append(MEAN)
std = np.std(a)
Upper = MEAN+ci*std
Lower = MEAN-ci*std
lower.append(Lower)
upper.append(Upper)
plt.figure(figsize=(20,8))
plt.plot(mean,'-b', label='mean')
plt.plot(upper,'-r', label='upper')
plt.plot(lower,'-g', label='lower')
plt.xlabel("Value", fontsize = 30)
plt.ylabel("Loss", fontsize = 30)
plt.xticks(fontsize= 30)
plt.yticks(fontsize= 30)
plt.legend(loc=4, prop={'size': 30})
In the above example, I drew %80 confidence interval. I have two questions:
1- Could you please tell me that this way of calculating and plotting the confidence interval is true?
2- I want to color the shadow area of the confidence interval. I have attached a figure, I want some thing like that. Could you please tell me if you have any solution? Thanks for your help.
Upvotes: 2
Views: 7662
Reputation: 13185
I'm not qualified to answer question 1, however the answers to this SO question produce different results from your code.
As for question 2, you can use matplotlib fill_between
to fill the area between two curves (the upper and lower of your example).
import numpy as np
import matplotlib.pyplot as plt
import scipy.stats
# https://stackoverflow.com/questions/15033511/compute-a-confidence-interval-from-sample-data
def mean_confidence_interval(data, confidence=0.95):
a = 1.0 * np.array(data)
n = len(a)
m, se = np.mean(a), scipy.stats.sem(a)
h = se * scipy.stats.t.ppf((1 + confidence) / 2., n-1)
return m, m-h, m+h
mean, lower, upper = [],[],[]
ci = 0.8
for i in range (20):
a = np.random.rand(100) # this is the output
m, ml, mu = mean_confidence_interval(a, ci)
mean.append(m)
lower.append(ml)
upper.append(mu)
plt.figure()
plt.plot(mean,'-b', label='mean')
plt.plot(upper,'-r', label='upper')
plt.plot(lower,'-g', label='lower')
# fill the area with black color, opacity 0.15
plt.fill_between(list(range(len(mean))), upper, lower, color="k", alpha=0.15)
plt.xlabel("Value")
plt.ylabel("Loss")
plt.legend()
Upvotes: 4