Reputation: 11
I'm studying from a textbook on data mining and I can't figure out how the author reads the nn values from the gcv output. The code and output are below:
## cv
alpha <- seq(0.20, 1, by = 0.01)
n1 = length(alpha)
g = matrix(nrow = n1, ncol = 4)
for (k in 1:length(alpha)) {
g[k,] <- gcv(NOx ~ lp(EquivRatio, nn = alpha[k]), data = ethanol)
}
g
the csv file is here: https://github.com/jgscott/ECO395M/blob/master/data/ethanol.csv
I'm usin locfit library in R.
How do you find with given output?
Upvotes: 1
Views: 134
Reputation: 174476
The nn
values are not read from the output - they are given in the input. In the loop, nn
is assigned as the kth value of the object alpha
.
Let's look at the output of the first 16 rows of g
, which is the same as the picture you included in your question:
g[1:16,]
#> [,1] [,2] [,3] [,4]
#> [1,] -3.220084 18.81266 16.426487 0.1183932
#> [2,] -3.249601 17.61614 15.436227 0.1154507
#> [3,] -3.319650 16.77004 14.752039 0.1151542
#> [4,] -3.336464 15.44404 13.889209 0.1115457
#> [5,] -3.373011 14.52391 13.115430 0.1099609
#> [6,] -3.408908 13.96789 12.634934 0.1094681
#> [7,] -3.408908 13.96789 12.634934 0.1094681
#> [8,] -3.469254 12.99316 11.830996 0.1085293
#> [9,] -3.504310 12.38808 11.283837 0.1078784
#> [10,] -3.529167 11.93838 10.928859 0.1073628
#> [11,] -3.546728 11.46960 10.516520 0.1065792
#> [12,] -3.552238 11.26372 10.322329 0.1061728
#> [13,] -3.576083 11.03575 10.135243 0.1062533
#> [14,] -3.679128 10.54096 9.662613 0.1079229
#> [15,] -3.679128 10.54096 9.662613 0.1079229
#> [16,] -3.699044 10.46534 9.578396 0.1082955
Note that rows 11, 12 and 13 were created inside your loop using alpha[11]
, alpha[12]
and alpha[13]
. These values were passed to the nn
argument of lp
. If you want the nn
values included in your table, all you need to do is:
cbind(g, nn = alpha)
#> nn
#> [1,] -3.220084 18.812657 16.426487 0.1183932 0.20
#> [2,] -3.249601 17.616143 15.436227 0.1154507 0.21
#> [3,] -3.319650 16.770041 14.752039 0.1151542 0.22
#> [4,] -3.336464 15.444040 13.889209 0.1115457 0.23
#> [5,] -3.373011 14.523910 13.115430 0.1099609 0.24
#> [6,] -3.408908 13.967891 12.634934 0.1094681 0.25
#> [7,] -3.408908 13.967891 12.634934 0.1094681 0.26
#> [8,] -3.469254 12.993165 11.830996 0.1085293 0.27
#> [9,] -3.504310 12.388077 11.283837 0.1078784 0.28
#> [10,] -3.529167 11.938379 10.928859 0.1073628 0.29
#> [11,] -3.546728 11.469598 10.516520 0.1065792 0.30
#> [12,] -3.552238 11.263716 10.322329 0.1061728 0.31
#> [13,] -3.576083 11.035752 10.135243 0.1062533 0.32
#> [14,] -3.679128 10.540964 9.662613 0.1079229 0.33
#> [15,] -3.679128 10.540964 9.662613 0.1079229 0.34
#> [16,] -3.699044 10.465337 9.578396 0.1082955 0.35
Upvotes: 1