Reputation: 13
i want to highlight my cell outlier with different condition minimum and maximum outlier for each column. this is my image of data.
num_cols = ['X','Y','FFMC','DMC','DC','ISI','temp','RH','wind','rain','area']
Q1 = dataset[num_cols].quantile(0.25)
Q3 = dataset[num_cols].quantile(0.75)
IQR = Q3 - Q1
lower = Q1 - 1.5 * IQR
upper = Q3 + 1.5 * IQR
i tried this code base on this solustion:
def highlight_outlier(df_):
styles_df = pd.DataFrame('background-color: white',
index=df_.index,
columns=df_.columns)
for s in num_cols:
styles_df[s].apply(lambda x: 'background-color: yellow' if x < upper[s] or x < lower[s] else 'background-color: white')
return styles_df
dataset_sort = dataset.sort_values("outliers")
dataset_sort.style.apply(highlight_outlier,axis=None)
also tried this code based on this solution:
def highlight_outlier(x):
c1 = 'background-color: yellow'
#empty DataFrame of styles
df1 = pd.DataFrame('', index=x.index, columns=x.columns)
#set new columns by condition
for col in num_cols:
df1.loc[(x[col] < upper), col] = c1
df1.loc[(x[col] > lower), col] = c1
return df1
dataset_sort = dataset.sort_values("outliers")
dataset_sort.style.apply(highlight_outlier,axis=None)
both failed. and how can i show only 5 data after styling? thank you
Upvotes: 1
Views: 491
Reputation: 6337
In your calculation lower
und upper
are of type pd.Series. Therefor you have to use an iterator in your loop inside the highlight_outlier()
function to avoid an indexing problem. I used upper[i]
below.
def highlight_outlier(x):
c1 = 'background-color: yellow'
#empty DataFrame of styles
df1 = pd.DataFrame('', index=x.index, columns=x.columns)
#set new columns by condition
for i, col in enumerate(df.columns):
df1.loc[(x[col] > upper[i]), col] = c1
df1.loc[(x[col] < lower[i]), col] = c1
return df1
Minimal Example
import pandas as pd
import numpy as np
df = pd.DataFrame({
'a':np.random.randint(0,100,10),
'b':np.random.randint(0,100,10),
})
Q1 = df[['a', 'b']].quantile(0.25)
Q3 = df[['a', 'b']].quantile(0.75)
IQR = Q3 - Q1
# here I set the values to some defaults to see any output
lower = [3, 5] # Q1 - 1.5 * IQR
upper = [97, 95] # Q3 + 1.5 * IQR
df.style.apply(highlight_outlier,axis=None)
Upvotes: 1