Reputation: 1647
I am using Sagemaker python sdk for my inference job and following this guide. I am triggering my sagemaker inference job from Airflow with below python callable:
def transform(sage_role, inference_file_local_path, **kwargs):
"""
Python callable to execute Sagemaker SDK train job. It takes infer_batch_output, infer_batch_input, model_artifact,
instance_type and infer_file_name as run time parameter.
:param inference_file_local_path: Local entry_point path for Inference file.
:param sage_role: Sagemaker execution role.
"""
model = TensorFlowModel(entry_point=infer_file_name,
source_dir=inference_file_local_path,
model_data=model_artifact,
role=sage_role,
framework_version="2.5.1")
tensorflow_serving_transformer = model.transformer(
instance_count=1,
instance_type=instance_type,
accept="text/csv",
strategy="SingleRecord",
max_payload=10,
max_concurrent_transforms=10,
output_path=batch_output)
return tensorflow_serving_transformer.transform(data=batch_input, content_type='text/csv')
and my simply inference.py
looks like:
def input_handler(data, context):
""" Pre-process request input before it is sent to TensorFlow Serving REST API
Args:
data (obj): the request data, in format of dict or string
context (Context): an object containing request and configuration details
Returns:
(dict): a JSON-serializable dict that contains request body and headers
"""
if context.request_content_type == 'application/x-npy':
# very simple numpy handler
payload = np.load(data.read().decode('utf-8'))
x_user_feature = np.asarray(payload.item().get('test').get('feature_a_list'))
x_channel_feature = np.asarray(payload.item().get('test').get('feature_b_list'))
examples = []
for index, elem in enumerate(x_user_feature):
examples.append({'feature_a_list': elem, 'feature_b_list': x_channel_feature[index]})
return json.dumps({'instances': examples})
if context.request_content_type == 'text/csv':
payload = pd.read_csv(data)
print("Model name is ..............")
model_name = context.model_name
print(model_name)
examples = []
row_ch = []
if config_exists(model_bucket, "{}{}".format(config_path, model_name)):
config_keys = get_s3_json_file(model_bucket, "{}{}".format(config_path, model_name))
feature_b_list = config_keys["feature_b_list"].split(",")
row_ch = [float(ch_feature_str) for ch_feature_str in feature_b_list]
if "column_names" in config_keys.keys():
cols = config_keys["column_names"].split(",")
payload.columns = cols
for index, row in payload.iterrows():
row_user = row['feature_a_list'].replace('[', '').replace(']', '').split()
row_user = [float(x) for x in row_user]
if not row_ch:
row_ch = row['feature_b_list'].replace('[', '').replace(']', '').split()
row_ch = [float(x) for x in row_ch]
example = {'feature_a_list': row_user, 'feature_b_list': row_ch}
examples.append(example)
raise ValueError('{{"error": "unsupported content type {}"}}'.format(
context.request_content_type or "unknown"))
def output_handler(data, context):
"""Post-process TensorFlow Serving output before it is returned to the client.
Args:
data (obj): the TensorFlow serving response
context (Context): an object containing request and configuration details
Returns:
(bytes, string): data to return to client, response content type
"""
if data.status_code != 200:
raise ValueError(data.content.decode('utf-8'))
response_content_type = context.accept_header
prediction = data.content
return prediction, response_content_type
It is working fine however I want to pass custom arguments to inference.py
so that I can modify the input data accordingly based on requirement. I thought of using a config file per requirement and download it from s3 based on model name but as I am using model_data
and passes model.tar.gz
at runtime context.model_name
is always None
.
Is there a way I can pass run time argument to inference.py
that I can use for customization?
In the docs I see sagemaker provides custom_attributes
but I don't see any example of it on how to use it and access it in inference.py
.
custom_attributes (string): content of ‘X-Amzn-SageMaker-Custom-Attributes’ header from the original request. For example, ‘tfs-model-name=half*plus*three,tfs-method=predict’
Upvotes: 1
Views: 615
Reputation: 1314
Currently CustomAttributes
is supported in the InvokeEndpoint API call when using a realtime Endpoint.
As an example, you can look at passing JSON Lines as input to your Transform Job that contains the input payload and some custom arguments which you can consume in your inference.py file.
For example,
{
"input":"1,2,3,4",
"custom_args":"my_custom_arg"
}
Upvotes: 1