Reputation:
I need to find the longest path of 0's in a 2d matrix recursively and can't figure out how to do it.( from a given (i , j) it can only move up, down, right or left)
For example this matrix:
mat = [[1, 0, 0, 3, 0],
[0, 0, 2, 3, 0],
[2, 0, 0, 2, 0],
[0, 1, 2, 3, 3]]
print(question3_b(mat))
This should return 6 as there are communities of sizes 1,3,6. My attempt: I created a few wrapper functions to find the maximum in a list, and a function to find the route at a given (i,j) element and add it to a list, and doing this on every point(i,j) in the matrix.
def question3_b(mat) -> int:
rows: int = len(mat)
cols: int = len(mat[0])
community_lengths = list()
for i in range(rows):
for j in range(cols):
visited = zeros(rows, cols) # create a 2d list of 0's with size rows,cols
a = findcommunity(mat, (i, j), visited)
print("a=", a)
community_lengths.append(a)
print(community_lengths)
return findmax(community_lengths)
def findcommunity(mat: list, indices: tuple, visited: list): # find length of community
#global rec_counter
#rec_counter += 1
i, j = indices
rows = len(mat)
cols = len(mat[0])
if mat[i][j] == 0:
visited[i][j] = 1
if i < rows - 1:
if visited[i + 1][j] == 0:
return 1 + findcommunity(mat, (i + 1, j), visited)
if j < cols - 1:
if visited[i][j + 1] == 0:
return 1 + findcommunity(mat, (i, j + 1), visited)
if i > 0:
if visited[i - 1][j] == 0:
return 1 + findcommunity(mat, (i - 1, j), visited)
if j > 0:
if visited[i][j - 1] == 0:
return 1 + findcommunity(mat, (i, j - 1), visited)
else: # mat[i][j]!=0
return 0
def zeros(rows:int,cols:int)->list: #create a 2d matrix of zeros with size (rows,cols)
if rows==1 and cols==1:return [[0]]
if rows==1 and cols>1:return [[0]*cols]
if rows>1 and cols>1:return zeros(rows-1,cols)+zeros(1,cols)
def findmax(arr:list)->int: # find max in an array using recursion
if len(arr)==2:
if arr[0]>arr[1]:return arr[0]
else:return arr[1]
else:
if arr[0]>arr[1]:
arr[1]=arr[0]
return findmax(arr[1:])
else:
return findmax(arr[1:])
Where did I go wrong? for a matrix of 4X4 zeros, I expect it to run 16*16 times[16 times for each i,j, and there are 16 elements in the matrix]. but it only runs once. zeros is a recursive function I made that functions like np.zeros, it creates a 2d matrix full of 0's with specified size.
Upvotes: 0
Views: 304
Reputation: 125
Here a completely different approach, in case someone is interested.
import numpy as np
mat = [[1, 0, 0, 3, 0],
[0, 0, 2, 3, 0],
[2, 0, 0, 2, 0],
[0, 1, 2, 3, 3]]
mat = np.array(mat)
# some padding of -1 to prevent index error
mask = np.full(np.array(mat.shape) + 2, -1)
mask[1:-1, 1:-1 ] = mat
# visiteds are set to -2
def trace(f, pt):
mask[tuple(pt)], pts = -2, [pt - 1]
pts += [trace(f, pt + d) for d in
([0, 1], [1, 0], [0, -1], [-1, 0]) if
mask[tuple(pt + d)] == f]
return pts
clusters = lambda f: {tuple(pt-1): trace(f, pt) for pt in np.argwhere(mask==f) if mask[tuple(pt)]==f}
# now call with value your looking for
print(clusters(0))
Upvotes: 0
Reputation: 7903
It got really messy but I tried to just change your code instead of writing a new solution. You should have a look at collections deque
. Saw this several times where people keep track of visited
a lot easier.
I changed visited to outside of the loop and defined it with np.zeros
(didn't have your function ;) ). I'm not sure if your recursive function calls at return were wrong but your if-statements were, or at least the logic behind it (or I didn't understand, also possible :) )
I changed that block completly. The first time you come across a 0
in mat
the recursive part will dig into the mat
as long as it finds another 0
left,right,bottom or top of it (that's the functionality behind dc
and dr
). That's where the community_counter
is increasing. If the function is returning the last time and you jump out to the outerloop in question_3b
the counter gets resetted and searchs for the next 0
(next start of another community).
import numpy as np
def question3_b(mat) -> int:
rows: int = len(mat)
cols: int = len(mat[0])
community_lengths = list()
visited = np.zeros((rows, cols)) # create a 2d list of 0's with size rows,cols
community_count = 0
for row in range(rows):
for col in range(cols):
if visited[row][col]==0:
community_count,visited = findcommunity(mat, (row, col), visited, community_count)
if community_count!=0:
community_lengths.append(community_count)
community_count=0
return community_lengths
def findcommunity(mat: list, indices: tuple, visited: list,community_count: int): # find length of community
i, j = indices
rows = len(mat)
cols = len(mat[0])
visited[i][j] = 1
if mat[i][j] == 0:
community_count += 1
dr = [-1, 0, 1, 0]
dc = [0,-1, 0, 1]
for k in range(4):
rr = i + dr[k]
cc = j + dc[k]
if 0<=rr<rows and 0<=cc<cols:
if visited[rr][cc]==0 and mat[rr][cc]==0:
community_count, visited = findcommunity(mat, (rr,cc), visited, community_count)
return community_count,visited
else:
return community_count,visited
mat = [[1, 0, 0, 3, 0],
[0, 0, 2, 3, 0],
[2, 0, 0, 2, 0],
[0, 1, 2, 3, 3]]
all_communities = question3_b(mat)
print(all_communities)
# [6, 3, 1]
print(max(all_communities))
# 6
EDIT
Here is the findcommunity
function in your way. Tested it and it works aswell.
def findcommunity(mat: list, indices: tuple, visited: list,community_count: int): # find length of community
i, j = indices
rows = len(mat)
cols = len(mat[0])
visited[i][j] = 1
if mat[i][j] == 0:
community_count += 1
if i < rows - 1:
if visited[i + 1][j] == 0:
community_count, visited = findcommunity(mat, (i + 1, j), visited, community_count)
if j < cols - 1:
if visited[i][j + 1] == 0:
community_count, visited = findcommunity(mat, (i, j + 1), visited, community_count)
if i > 0:
if visited[i - 1][j] == 0:
community_count, visited = findcommunity(mat, (i - 1, j), visited, community_count)
if j > 0:
if visited[i][j - 1] == 0:
community_count, visited = findcommunity(mat, (i, j - 1), visited, community_count)
return community_count,visited
else:
return community_count,visited
Upvotes: 0