Reputation: 198
I currently have a dataset that when opened with xarray contains three coordinates x, y, band
. The band coordinate has temperature and dewpoint each at 4 different time intervals, meaning there are 8 total bands. Is there a way to reshape this so that I could have x, y, band, time
such that the band coordinate is now only length 2 and the time coordinate would be length 4?
I thought I could add a new coordinate named time
and then add the bands in but
ds = ds.assign_coords(time=[1,2,3,4])
returns ValueError: cannot add coordinates with new dimensions to a DataArray
.
Upvotes: 0
Views: 709
Reputation: 15452
You can re-assign the "band" coordinate to a MultiIndex
:
In [4]: da = xr.DataArray(np.random.random((4, 4, 8)), dims=['x', 'y', 'band'])
In [5]: da.coords['band'] = pd.MultiIndex.from_arrays(
...: [
...: [1, 1, 1, 1, 2, 2, 2, 2],
...: pd.to_datetime(['2020-01-01', '2021-01-01', '2022-01-01', '2023-01-01'] * 2),
...: ],
...: names=['band_stacked', 'time'],
...: )
In [6]: stacked
Out[6]:
<xarray.DataArray (x: 4, y: 4, band: 8)>
array([[[2.55228052e-01, 6.71680777e-01, 8.76158643e-01, 5.23808010e-01,
8.56941412e-01, 2.75757101e-01, 7.88877551e-02, 1.54739786e-02],
[3.70350510e-01, 1.90604842e-02, 2.17871931e-01, 9.40704074e-01,
4.28769745e-02, 9.24407375e-01, 2.81715762e-01, 9.12889594e-01],
[7.36529770e-02, 1.53507827e-01, 2.83341417e-01, 3.00687140e-01,
7.41822972e-01, 6.82413237e-01, 7.92126231e-01, 4.84821281e-01],
[5.24897891e-01, 4.69537663e-01, 2.47668326e-01, 7.56147251e-02,
6.27767921e-01, 2.70630355e-01, 5.44669493e-01, 3.53063860e-01]],
...
[[1.56513994e-02, 8.49568142e-01, 3.67268562e-01, 7.28406400e-01,
2.82383223e-01, 5.00901504e-01, 9.99643260e-01, 1.16446139e-01],
[9.98980637e-01, 2.45060112e-02, 8.12423749e-01, 4.49895624e-01,
6.64880037e-01, 8.73506549e-01, 1.79186788e-01, 1.94347924e-01],
[6.32000394e-01, 7.60414128e-01, 4.90153658e-01, 3.40693056e-01,
5.19820559e-01, 4.49398587e-01, 1.90339730e-01, 6.38101614e-02],
[7.64102189e-01, 6.79961676e-01, 7.63165470e-01, 6.23766131e-02,
5.62677420e-01, 3.85784911e-01, 4.43436365e-01, 2.44385584e-01]]])
Coordinates:
* band (band) MultiIndex
- band_stacked (band) int64 1 1 1 1 2 2 2 2
- time (band) datetime64[ns] 2020-01-01 2021-01-01 ... 2023-01-01
Dimensions without coordinates: x, y
Then you can expand the dimensionality by unstacking:
In [7]: unstacked
Out[7]:
<xarray.DataArray (x: 4, y: 4, band: 2, time: 4)>
array([[[[2.55228052e-01, 6.71680777e-01, 8.76158643e-01,
5.23808010e-01],
[8.56941412e-01, 2.75757101e-01, 7.88877551e-02,
1.54739786e-02]],
...
[[7.64102189e-01, 6.79961676e-01, 7.63165470e-01,
6.23766131e-02],
[5.62677420e-01, 3.85784911e-01, 4.43436365e-01,
2.44385584e-01]]]])
Coordinates:
* band (band) int64 1 2
* time (time) datetime64[ns] 2020-01-01 2021-01-01 2022-01-01 2023-01-01
Dimensions without coordinates: x, y
Another more manual option would be to reshape in numpy and just create a new DataArray. Note that this manual reshape is much faster for a larger array:
In [8]: reshaped = xr.DataArray(
...: da.data.reshape((4, 4, 2, 4)),
...: dims=['x', 'y', 'band', 'time'],
...: coords={
...: 'time': pd.to_datetime(['2020-01-01', '2021-01-01', '2022-01-01', '2023-01-01']),
...: 'band': [1, 2],
...: },
...: )
Note that if your data is chunked (and assuming you'd like to keep it that way) your options are a bit more limited - see the dask docs on reshaping dask arrays. The first (MultiIndexing unstack) approach does work with dask arrays as long as the arrays are not chunked along the unstacked dimension. See this question for an example.
Upvotes: 1