Reputation: 4040
I have the following dataframe:
pd.DataFrame({"name": ['Alfred', 'NONE', 'Catwoman'],
"toy": [np.nan, 'Batmobile', 'EMPTY'],
"kuku": [None, 8, 0]})
Now I want to remove all missing values - None or 'NONE' or 'EMPTY. How can I instruct pandas to remove variants of missing data: None, NONE and 'EMPTY' and any other variant (which is predefined as such)?
Upvotes: 0
Views: 512
Reputation: 79208
df.replace('NONE', np.nan).dropna()
name toy kuku
2 Catwoman EMPTY 0.0
if you just want to replace all those:
df.replace({'NONE':np.nan, 'EMPTY':np.nan, 'None':np.nan})
name toy kuku
0 Alfred NaN NaN
1 NaN Batmobile 8.0
2 Catwoman NaN 0.0
then you can use .dropna(axis = )
to drop the na values
Upvotes: 1