Reputation: 133
I have a rather large CSV so I am using AWS EMR to read the data into a Spark dataframe to perform some operations. I have a pandas function that does some simple preprocessing:
def clean_census_data(df):
"""
This function cleans the dataframe and drops columns that contain 70% NaN values
"""
# Replace None or 0 with np.nan
df = df.replace('None', np.nan)
# Replace weird numbers
df = df.replace(-666666666.0, np.nan)
# Drop columns that contain 70% NaN or 0 values
df = df.loc[:, df.isnull().mean() < .7]
return df
I want to apply this function onto a Spark dataframe, but the functions are not the same. I am not familiar with Spark and performing these rather simple operations in pandas is not obvious to me how to perform the same operations in Spark. I know I can convert a Spark dataframe into pandas, but that does not seem very efficient.
Upvotes: 0
Views: 268
Reputation: 24498
Native Spark functions can do such aggregation for every column.
The following dataframe contains the percentage of nulls, nans and zeros.
df2 = df1.select(
[(F.count(F.when(F.isnan(c) | F.isnull(c) | (F.col(c) == 0), c))
/ F.count(F.lit(1))).alias(c)
for c in df1.columns]
)
With an example:
from pyspark.sql import functions as F
df1 = spark.createDataFrame(
[(1000, 0, None),
(None, 2, None),
(None, 3, 2222),
(None, 4, 2233),
(None, 5, 2244)],
['c1', 'c2', 'c3'])
df2 = df1.select(
[(F.count(F.when(F.isnan(c) | F.isnull(c) | (F.col(c) == 0), c))
/ F.count(F.lit(1))).alias(c)
for c in df1.columns]
)
df2.show()
# +---+---+---+
# | c1| c2| c3|
# +---+---+---+
# |0.8|0.2|0.4|
# +---+---+---+
What remains is just selecting the columns from df1:
df = df1.select([c for c in df1.columns if df2.head()[c] < .7])
df.show()
# +---+----+
# | c2| c3|
# +---+----+
# | 0|null|
# | 2|null|
# | 3|2222|
# | 4|2233|
# | 5|2244|
# +---+----+
The percentage is calculated based on this condition, change it according to your needs:
F.isnan(c) | F.isnull(c) | (F.col(c) == 0)
This would replace None with np.nan:
df.fillna(np.nan)
This would replace specified value with np.nan:
df.replace(-666666666, np.nan)
Upvotes: 0
Reputation: 96
First answer, so please be kind. This function should work with pyspark dataframes instead of pandas dataframes, and should give you similar results:
def clean_census_data(df):
"""
This function cleans the dataframe and drops columns that contain 70% NaN values
"""
# Replace None or 0 with np.nan
df = df.replace('None', None)
# Replace weird numbers
df = df.replace(-666666666.0, None)
# Drop columns that contain 70% NaN or 0 values
selection_dict = df.select([(count(when(isnan(c) | col(c).isNull() | (col(c).cast('int') == 0), c))/count(c) > .7).alias(c) for c in df.columns]).first().asDict()
columns_to_remove = [name for name, is_selected in selection_dict.items() if is_selected]
df = df.drop(*columns_to_remove)
return df
Attention: The resulting dataframe contains None instead of np.nan.
Upvotes: 2