Reputation: 2085
I would like to run groupby and then apply Numba function on top of a pandas. This is the example :
@nb.jit(nopython=True)
def my_Numba_function(arr1,arr2):
arr1[:] =11
arr2[:] =22
return arr1,arr2
and_df= df_input_imputed.groupby(key_cols_list, as_index = True)[['col_1,'col_2']].\
apply(lambda x: pd.DataFrame(my_Numba_function(arr1 = x['col_1'].values,arr2 = x['col_2'].values)) )
And instead of getting two columns additional to my index, I am getting the results in a lot of columns ( rows became columns).
How can I fix this ?
Thanks, Boris
Upvotes: 1
Views: 265