Reputation: 368
Gridlines can be set behind the plot of a filled area by using either ax.set_axisbelow(True)
or plt.rc('axes', axisbelow=True)
(other stack question). But when using an alpha<1
then the gridlines will also come to the front. Is there a way to still hide the gridlines or to apply selective alpha
blending? I am thinking of an object-based approach where one specifies alpha between object a and b.
The answer should also be applicable to fill_between
.
Example for reproducing the problem:
import numpy as np
import matplotlib.pyplot as plt
np.random.seed(2022)
x1 = np.random.normal(0, 0.8, 1000)
x2 = np.random.normal(-2, 1, 1000)
x3 = np.random.normal(3, 2, 1000)
kwargs = dict(histtype='stepfilled', alpha=.3, density=True, bins=40)
fig, ax = plt.subplots(figsize=(9, 6))
ax.hist(x1, **kwargs)
ax.hist(x2, **kwargs)
ax.hist(x3, **kwargs)
ax.set_axisbelow(True)
ax.yaxis.grid(color='gray', linestyle='dashed')
ax.xaxis.grid(color='gray', linestyle='dashed')
Upvotes: 1
Views: 597
Reputation: 5912
There is no capacity for conditional alphas in Matplotlib; that would be quite an API!
I would just make a white version of the histograms behind the ones I wanted to be alpha:
import numpy as np
import matplotlib.pyplot as plt
np.random.seed(2022)
x1 = np.random.normal(0, 0.8, 1000)
x2 = np.random.normal(-2, 1, 1000)
x3 = np.random.normal(3, 2, 1000)
kwargs0 = dict(histtype='stepfilled', color='w', density=True, bins=40)
kwargs = dict(histtype='stepfilled', alpha=.3, density=True, bins=40)
fig,ax = plt.subplots()
ax.hist(x1, **kwargs0)
ax.hist(x2, **kwargs0)
ax.hist(x3, **kwargs0)
ax.hist(x1, **kwargs)
ax.hist(x2, **kwargs)
ax.hist(x3, **kwargs)
ax.set_axisbelow(True)
ax.yaxis.grid(color='gray', linestyle='dashed')
ax.xaxis.grid(color='gray', linestyle='dashed')
Upvotes: 6
Reputation: 62513
seaborn
, since it's is a high-level api for matplotlib
.hue=
, then set color with palette=['white']*len(df.source.unique())
, or palette=['white']*3
.
pallete=
must have the same number of values as the number of unique values in the column passed to hue=
.hue=
is not used, set color='white'
alpha=1
for the 'white'
plot. If this is not done, the grid will be visible through the color patch and edge lines.python 3.10
, pandas 1.4.2
, matplotlib 3.5.1
, seaborn 0.11.2
import pandas as pd
import numpy as np # for sample data
import matplotlib.pyplot as plt
import seaborn as sns
# using the x1, x2, and x3 from the OP
# create dataframe with identifier column
data = [x1, x2, x3]
df = pd.concat([pd.DataFrame(x, columns=['values']) for x in data]).reset_index(drop=True)
df['source'] = np.repeat(['x1', 'x2', 'x3'], [len(x) for x in data])
values source
0 -0.000422 x1
1 -0.219921 x1
2 -0.111428 x1
3 1.587749 x1
4 0.225687 x1
hue=
# plot
fig, ax = plt.subplots(figsize=(9, 6))
sns.histplot(data=df, x='values', stat='density', palette=['white']*3, hue='source',
common_norm=False, bins=40, element='step', ax=ax, alpha=1)
sns.histplot(data=df, x='values', hue='source', stat='density', common_norm=False,
bins=40, alpha=0.3, element='step', ax=ax)
ax.set_axisbelow(True)
ax.grid()
hue=
fig, ax = plt.subplots(figsize=(9, 6))
sns.histplot(data=df, x='values', stat='density', bins=40, color='white', element='step', ax=ax, alpha=1)
sns.histplot(data=df, x='values', stat='density', bins=40, alpha=0.3, element='step', ax=ax)
ax.set_axisbelow(True)
ax.grid()
alpha=1
for the 'white'
plot.Upvotes: 0