Reputation: 81
I am new to Python and trying to plot the training and validation accuracy and loss for my MLP Regressor, however, I am getting the following error, what am I doing wrong?
TypeError: fit() got an unexpected keyword argument 'validation_split'
mlp_new = MLPRegressor(hidden_layer_sizes=(18, 18,18),
max_iter = 10000000000,activation = 'relu',
solver = 'adam', learning_rate='constant',
alpha=0.05,validation_fraction=0.2,random_state=0,early_stopping=True)
mlp_new.fit(X_train, y_train)
mlp_new_y_predict = mlp_new.predict((X_test))
mlp_new_y_predict
import keras
from matplotlib import pyplot as plt
history = mlp_new.fit(X_train, y_train, validation_split = 0.1, epochs=50, batch_size=4)
plt.plot(history.history['accuracy'])
plt.plot(history.history['val_accuracy'])
plt.title('model accuracy')
plt.ylabel('accuracy')
plt.xlabel('epoch')
plt.legend(['train', 'val'], loc='upper left')
plt.show()
Upvotes: 1
Views: 1505
Reputation: 524
Yes, you definitely can find a validation_split
arg in the keras model .fit()
method.
But:
The model you are going to use here is not that one.
Check the documentation below, Methods section:
method .fit(..)
has only two args: X
and y
.
Upvotes: 1