Reputation: 753
I have a torch model
that receive a pretrained model and alter the last module
of pretrained model for finetuning. But a realistic situation is the last module of these pretrained model have different name, for instance, torchvision.models.resnet*()
is fc
, timm.models.vit*()
is head
, some other may contain several output layer comprising the last module.
What I want is that I can alter these different layers in a unified way. Such as
last_model = get_last_module(pretrained_model)
last_model = nn.Sequential(...)
.
But in this way, the pretrained_model
do not changed at all.
For example, what I do in a stupid way:
def __init__(self, base_encoder, pred_dim=512):
"""
dim: feature dimension (default: 2048)
pred_dim: hidden dimension of the predictor (default: 512)
"""
super().__init__()
# create the encoder
# num_classes is the output fc dimension, zero-initialize last BNs
self.encoder = base_encoder
if isinstance(self.encoder, torchvision.models.ResNet):
dim = self.encoder.fc.out_features
# build a 3-layer projector
prev_dim = self.encoder.fc.in_features
self.encoder.fc = nn.Sequential(
nn.Linear(prev_dim, prev_dim, bias=False),
nn.BatchNorm1d(prev_dim),
nn.ReLU(inplace=True), # first layer
nn.Linear(prev_dim, prev_dim, bias=False),
nn.BatchNorm1d(prev_dim),
nn.ReLU(inplace=True), # second layer
# nn.Linear(prev_dim, dim),
self.encoder.fc,
nn.BatchNorm1d(dim, affine=False),
) # output layer
self.encoder.fc[
6
].bias.requires_grad = False # hack: not use bias as it is followed by BN
elif isinstance(self.encoder, timm.models.VisionTransformer):
dim = self.encoder.head.out_features
# build a 3-layer projector
prev_dim = self.encoder.head.in_features
self.encoder.head = nn.Sequential(
nn.Linear(prev_dim, prev_dim, bias=False),
nn.BatchNorm1d(prev_dim),
nn.ReLU(inplace=True), # first layer
nn.Linear(prev_dim, prev_dim, bias=False),
nn.BatchNorm1d(prev_dim),
nn.ReLU(inplace=True), # second layer
# nn.Linear(prev_dim, dim),
self.encoder.head,
nn.BatchNorm1d(dim, affine=False),
) # output layer
self.encoder.head[
6
].bias.requires_grad = False # hack: not use bias as it is followed by BN
# build a 2-layer predictor
self.predictor = nn.Sequential(
nn.Linear(dim, pred_dim, bias=False),
nn.BatchNorm1d(pred_dim),
nn.ReLU(inplace=True), # hidden layer
nn.Linear(pred_dim, dim),
)
Upvotes: 0
Views: 1920
Reputation: 1025
How about using children?
pretrained_model_except_last_layer = list(pretrained_model.children())[:-1]
new_model = nn.Sequential(*pretrained_model_except_last_layer, your_new_classfier)
Upvotes: 1