Reputation: 619
I am using Tensorflow 2.8. When I try evaluating my pre-trained(pix2pix) image segmentation model using MeanIoU, I get the errors below:
Node: 'confusion_matrix/assert_non_negative_1/assert_less_equal/Assert/AssertGuard/Assert'
2 root error(s) found.
(0) INVALID_ARGUMENT: assertion failed: [`predictions` contains negative values. ] [Condition x >= 0 did not hold element-wise:] [x (confusion_matrix/Cast:0) = ] [0 0 0...]
[[{{node confusion_matrix/assert_non_negative_1/assert_less_equal/Assert/AssertGuard/Assert}}]]
[[confusion_matrix/assert_less_1/Assert/AssertGuard/pivot_f/_31/_65]]
(1) INVALID_ARGUMENT: assertion failed: [`predictions` contains negative values. ] [Condition x >= 0 did not hold element-wise:] [x (confusion_matrix/Cast:0) = ] [0 0 0...]
[[{{node confusion_matrix/assert_non_negative_1/assert_less_equal/Assert/AssertGuard/Assert}}]]
0 successful operations.
0 derived errors ignored. [Op:__inference_train_function_50298]
Here is my compilation code:
myTransformer.compile(optimizer='adam',
loss = DiceLoss(),
metrics=[tf.keras.metrics.MeanIoU(num_classes=100)])
I have tried changing num_classes
to many values eg:10,100,1000,10000, and it still doesn't work.
Do you have a fix for this?
Upvotes: 0
Views: 398