Reputation:
Getting error "Please set the default workspace with MLClient". How do I set the default workspace with MLClient? Trying to use data asset https://learn.microsoft.com/en-us/azure/machine-learning/how-to-create-register-data-assets?tabs=Python-SDK
from azure.ai.ml.entities import Data
from azure.ai.ml.constants import AssetTypes
from azure.ai.ml import MLClient
#Enter details of your AzureML workspace
subscription_id = "<SUBSCRIPTION_ID>"
resource_group = "<RESOURCE_GROUP>"
workspace = "<AZUREML_WORKSPACE_NAME>"
ml_client = MLClient(subscription_id, resource_group, workspace)
data_location='path'
my_data = Data(
path=data_loacation,
type=AssetTypes.URI_FOLDER,
description="Data",
name="Data_test")
ml_client.data.create_or_update(my_data)
Upvotes: 0
Views: 3523
Reputation: 1
I recommend to replace <SUBSCRIPTION_ID>
, <RESOURCE_GROUP>
and <AZUREML_WORKSPACE_NAME>
with actual values.
If you do that, the MLClient constructor will set the workspace accordingly.
Upvotes: 0
Reputation: 1864
Getting error "Please set the default workspace with MLClient". How do I set the default workspace with MLClient?
Make sure you have installed Python SDK azure-ai-ml v2(preview)
using pip install --pre azure-ai-ml
You can try following code snippets taken from workspace.ipynb to set the default workspace with MLClient:
Import required libraries:
from azure.ai.ml import MLClient
from azure.ai.ml.entities import Workspace
from azure.identity import DefaultAzureCredential
ml_client = MLClient(DefaultAzureCredential(), subscription_id, resource_group)
Creating a unique workspace name with current datetime to avoid conflicts:
import datetime
basic_workspace_name = "mlw-basic-prod-" + datetime.datetime.now().strftime(
"%Y%m%d%H%M"
)
ws_basic = Workspace(
name=basic_workspace_name,
location="eastus",
display_name="Basic workspace-example",
description="This example shows how to create a basic workspace",
hbi_workspace=False,
tags=dict(purpose="demo"),
)
ml_client.workspaces.begin_create(ws_basic)
Get a list of workspaces in a resource group:
for ws in my_ml_client.workspaces.list():
print(ws.name, ":", ws.location, ":", ws.description)
Load a specific workspace using parameters:
ws = MLClient(DefaultAzureCredential(), subscription_id='<SUBSCRIPTION_ID>', resource_group_name='<RESOURCE_GROUP>', workspace_name='<AML_WORKSPACE_NAME>')
Upvotes: 1