Reputation: 25
I want to convert an image from Cartesian to Polar and to use it for opengl texture. So I used matlab referring to the two articles below.
My code is exactly same with Link 2's anwser
% load image
img = imread('my_image.png');
% convert pixel coordinates from cartesian to polar
[h,w,~] = size(img);
[X,Y] = meshgrid((1:w)-floor(w/2), (1:h)-floor(h/2));
[theta,rho] = cart2pol(X, Y);
Z = zeros(size(theta));
% show pixel locations (subsample to get less dense points)
XX = X(1:8:end,1:4:end);
YY = Y(1:8:end,1:4:end);
tt = theta(1:8:end,1:4:end);
rr = rho(1:8:end,1:4:end);
subplot(121), scatter(XX(:),YY(:),3,'filled'), axis ij image
subplot(122), scatter(tt(:),rr(:),3,'filled'), axis ij square tight
% show images
figure
subplot(121), imshow(img), axis on
subplot(122), warp(theta, rho, Z, img), view(2), axis square
The result was exactly what I wanted, and I was very satisfied except for one thing. It's the area (red circled area) in the picture just below. Considering that the opposite side (blue circled area) is not, I think this part should also be filled. Because of this part is empty, so there is a problem when using it as a texture. And I wonder how I can fill this part. Thank you. (little difference from Link 2's answer code like degree<->radian and axis values. but i think it is not important.)
Upvotes: 1
Views: 714
Reputation: 15574
Those issues you show in your question happen because your algorithm is wrong.
What you did (push):
Do it the other way around (pull):
The distinction is called "push" (into output) vs "pull" (from input). Only Pull gives proper results.
Very little MATLAB code is necessary. You just need pol2cart
and interp2
, and a meshgrid
.
With interp2
you get to choose the interpolation (linear, cubic, ...). Nearest-neighbor interpolation leaves visible artefacts.
im = im2single(imread("PQFax.jpg"));
% center of polar map, manually picked
cx = 10 + 409/2;
cy = 7 + 413/2;
% output parameters
radius = 212;
dRho = 1;
dTheta = 2*pi / (2*pi * radius);
Thetas = pi/2 - (0:dTheta:2*pi);
Rhos = (0:dRho:radius);
% polar mesh
[Theta, Rho] = meshgrid(Thetas, Rhos);
% transform...
[Xq,Yq] = pol2cart(Theta, Rho);
% translate to sit on the circle's center
Xq = Xq + cx;
Yq = Yq + cy;
% sample image at those points
Ro = interp2(im(:,:,1), Xq,Yq, "cubic");
Go = interp2(im(:,:,2), Xq,Yq, "cubic");
Bo = interp2(im(:,:,3), Xq,Yq, "cubic");
Vo = cat(3, Ro, Go, Bo);
Vo = imrotate(Vo, 180);
imshow(Vo)
The other way around (get a "torus" from a "ribbon") is quite similar. Throw a meshgrid on the torus space, subtract center, transform from cartesian to polar, and use those to sample from the "ribbon" image into the "torus" image.
I'm more familiar with OpenCV than with MATLAB. Perhaps MATLAB has something like OpenCV's warpPolar()
, or a generic remap()
. In any case, the operation is trivial to do entirely "by hand" but there are enough supporting functions to take the heavy lifting off your hands (interp2, pol2cart, meshgrid).
Upvotes: 2
Reputation: 820
1.- The white arcs tell that the used translation pol-cart introduces significant errors.
2.- Reversing the following script solves your question.
It's a script that goes from cart-pol without introducing errors or ignoring input data, which is what happens when such wide white arcs show up upon translation apparently correct.
clear all;clc;close all
clc,cla;
format long;
A=imread('shaffen dass.jpg');
[sz1 sz2 sz3]=size(A);
szx=sz2;szy=sz1;
A1=A(:,:,1);A2=A(:,:,2);A3=A(:,:,3); % working with binary maps or grey scale images this wouldn't be necessary
figure(1);imshow(A);
hold all;
Cx=floor(szx/2);Cy=floor(szy/2);
plot(Cx,Cy,'co'); % because observe image centre not centered
Rmin=80;Rmax=400; % radius search range for imfindcircles
[centers, radii]=imfindcircles(A,[Rmin Rmax],... % outer circle
'ObjectPolarity','dark','Sensitivity',0.9);
h=viscircles(centers,radii);
hold all; % inner circle
[centers2, radii2]=imfindcircles(A,[Rmin Rmax],...
'ObjectPolarity','bright');
h=viscircles(centers2,radii2);
% L=floor(.5*(radii+radii2)); % this is NOT the length X that should have the resulting XY morphed graph
L=floor(2*pi*radii); % expected length of the morphed graph
cx=floor(.5*(centers(1)+centers2(1))); % coordinates of averaged circle centres
cy=floor(.5*(centers(2)+centers2(2)));
plot(cx,cy,'r*'); % check avg centre circle is not aligned to figure centre
plot([cx 1],[cy 1],'r-.');
t=[45:360/L:404+1-360/L]; % if step=1 then we only get 360 points but need an amount of L points
% if angle step 1/L over minute waiting for for loop to finish
R=radii+5;x=R*sind(t)+cx;y=R*cosd(t)+cy; % build outer perimeter
hL1=plot(x,y,'m'); % axis equal;grid on;
% hold all;
% plot(hL1.XData,hL1.YData,'ro');
x_ref=hL1.XData;y_ref=hL1.YData;
% Sx=zeros(ceil(R),1);Sy=zeros(ceil(R),1);
Sx={};Sy={};
for k=1:1:numel(hL1.XData)
Lx=floor(linspace(x_ref(k),cx,ceil(R)));
Ly=floor(linspace(y_ref(k),cy,ceil(R)));
% plot(Lx,Ly,'go'); % check
% plot([cx x(k)],[cy y(k)],'r');
% L1=unique([Lx;Ly]','rows');
Sx=[Sx Lx'];Sy=[Sy Ly'];
end
sx=cell2mat(Sx);sy=cell2mat(Sy);
[s1 s2]=size(sx);
B1=uint8(zeros(s1,s2));
B2=uint8(zeros(s1,s2));
B3=uint8(zeros(s1,s2));
for n=1:1:s2
for k=1:1:s1
B1(k,n)=A1(sx(k,n),sy(k,n));
B2(k,n)=A2(sx(k,n),sy(k,n));
B3(k,n)=A3(sx(k,n),sy(k,n));
end
end
C=uint8(zeros(s1,s2,3));
C(:,:,1)=B1;
C(:,:,2)=B2;
C(:,:,3)=B3;
figure(2);imshow(C);
the resulting
3.- let me know if you'd like some assistance writing pol-cart from this script.
Regards
John BG
Upvotes: 2