Reputation: 149
Today I'm trying to evaluate this differential equation for internal energy in a gas in Fortran 90:
du / dt = dT / dt = - λ / ρ
Where u is the internal energy and λ is the cooling function (and they are both functions of temperature T only). ρ is the mass density and we can assume it's constant.
I'm using a Runge-Kutta 2nd order method (heun), and I'm sure I wrote the actual solving algorithm correctly, but I'm pretty sure I'm messing up the implementation. I'm also not sure how to efficiently choose an arbitrary energy scale.
I'm implementing the Right Hand Side with this subroutine:
MODULE RHS
! right hand side
IMPLICIT NONE
CONTAINS
SUBROUTINE dydx(neq, y, f)
INTEGER, INTENT(IN) :: neq
REAL*8, DIMENSION(neq), INTENT(IN) :: y
REAL*8, DIMENSION(neq), INTENT(OUT) :: f
f(1) = -y(1)
END SUBROUTINE dydx
END MODULE RHS
And this is the Heun algorithm I'm using:
SUBROUTINE heun(neq, h, yold, ynew)
INTEGER, INTENT(IN) :: neq
REAL*8, INTENT(IN) :: h
REAL*8, DIMENSION(neq), INTENT(IN) ::yold
REAL*8, DIMENSION(neq), INTENT(OUT) :: ynew
REAL*8, DIMENSION(neq) :: f, ftilde
INTEGER :: i
CALL dydx(neq, yold, f)
DO i=1, neq
ynew(i) = yold(i) + h*f(i)
END DO
CALL dydx(neq, ynew, ftilde)
DO i=1, neq
ynew(i) = yold(i) + 0.5d0*h*(f(i) + ftilde(i))
END DO
END SUBROUTINE heun
Considering both lambda
and rho
are n-dimensional arrays, i'm saving the results in an array called u_tilde, selecting a starting condition at T = 1,000,000 K
h = 1.d0/n
u_tilde(1) = lambda(n)/density(n) ! lambda(3) is at about T=one million
DO i = 2, n
CALL heun(1, h*i, u_tilde(i-1), u_tilde(i))
ENDDO
This gives me this weird plot for temperature over time.
I would like to have a starting temperature of one million kelvin, and then have it cool down to 10.000 K and see how long it takes. How do I implement these boundary conditions? What am I doing wrong in RHS and in setting up the calculation loop in the program?
Upvotes: 0
Views: 980
Reputation: 29264
Your implementation of dydx
only assigns the first element.
Also, there is no need to define loops for each step, as Fortran90 can do vector operations.
For a modular design, I suggest implementing a custom type that holds your model data, like the mass density and the cooling coefficient.
Here is an example simple implementation, that only holds one scalar value, such that y' = -c y
module mod_diffeq
use, intrinsic :: iso_fortran_env, wp => real64
implicit none
type :: model
real(wp) :: coefficient
end type
contains
pure function dxdy(arg, x, y) result(yp)
type(model), intent(in) :: arg
real(wp), intent(in) :: x, y(:)
real(wp) :: yp(size(y))
yp = -arg%coefficient*y
end function
pure function heun(arg, x0, y0, h) result(y)
type(model), intent(in) :: arg
real(wp), intent(in) :: x0, y0(:), h
real(wp) :: y(size(y0)), k0(size(y0)), k1(size(y0))
k0 = dxdy(arg, x0, y0)
k1 = dxdy(arg, x0+h, y0 + h*k0)
y = y0 + h*(k0+k1)/2
end function
end module
and the above module is used for some cooling simulations with
program FortranCoolingConsole1
use mod_diffeq
implicit none
integer, parameter :: neq = 100
integer, parameter :: nsteps = 256
! Variables
type(model):: gas
real(wp) :: x, y(neq), x_end, h
integer :: i
! Body of Console1
gas%coefficient = 1.0_wp
x = 0.0_wp
x_end = 10.0_wp
do i=1, neq
if(i==1) then
y(i) = 1000.0_wp
else
y(i) = 0.0_wp
end if
end do
print '(1x," ",a22," ",a22)', 'x', 'y(1)'
print '(1x," ",g22.15," ",g22.15)', x, y(1)
! Initial Conditions
h = (x_end - x)/nsteps
! Simulation
do while(x<x_end)
x = x + h
y = heun(gas, x, y, h)
print '(1x," ",g22.15," ",g22.15)', x, y(1)
end do
end program
Note that I am only tracking the 1st element of neq
components of y.
The sample output shows exponential decay starting from 1000
x y(1)
0.00000000000000 1000.00000000000
0.390625000000000E-01 961.700439453125
0.781250000000000E-01 924.867735244334
0.117187500000000 889.445707420492
0.156250000000000 855.380327695983
0.195312500000000 822.619637044785
0.234375000000000 791.113666448740
0.273437500000000 760.814360681126
0.312500000000000 731.675505009287
0.351562500000000 703.652654704519
0.390625000000000 676.703067251694
0.429687500000000 650.785637155231
0.468750000000000 625.860833241968
0.507812500000000 601.890638365300
0.546875000000000 578.838491418631
0.585937500000000 556.669231569681
...
Also, if you wanted the above to implement runge-kutta 4th order you can include the following in the mod_diffeq
module
pure function rk4(arg, x0, y0, h) result(y)
type(model), intent(in) :: arg
real(wp), intent(in) :: x0, y0(:), h
real(wp) :: y(size(y0)), k0(size(y0)), k1(size(y0)), k2(size(y0)), k3(size(y0))
k0 = dxdy(arg, x0, y0)
k1 = dxdy(arg, x0+h/2, y0 + (h/2)*k0)
k2 = dxdy(arg, x0+h/2, y0 + (h/2)*k1)
k3 = dxdy(arg, x0+h, y0 + h*k2)
y = y0 + (h/6)*(k0+2*k1+2*k2+k3)
end function
Upvotes: 1