Reputation: 2043
I am trying to count the number of elements by groupings, subject to the condition that each grouping code ("Group") is > 0. Suppose we start with the below output DF generated via the code immediately beneath:
Element Group reSeq
<chr> <dbl> <int>
1 R 0 1
2 R 0 1
3 X 0 1
4 X 1 2
5 X 1 2
6 X 0 1
7 X 0 1
8 X 0 1
9 B 0 1
10 R 0 1
11 R 2 2
12 R 2 2
13 X 3 3
14 X 3 3
15 X 3 3
library(dplyr)
myDF <- data.frame(
Element = c("R","R","X","X","X","X","X","X","B","R","R","R","X","X","X"),
Group = c(0,0,0,1,1,0,0,0,0,0,2,2,3,3,3)
)
myDF %>% group_by(Element) %>% mutate(reSeq = match(Group, unique(Group)))
Instead, I would like the reSeq
column to calculate and output as shown below with explanations to the right:
Element Group reSeq reSeq explanation
<chr> <dbl> <int>
1 R 0 1 1st instance of R (ungrouped)(Group = 0 means not grouped)
2 R 0 2 2nd instance of R (ungrouped)(Group = 0 means not grouped)
3 X 0 1 1st instance of X (ungrouped)(Group = 0 means not grouped)
4 X 1 2 2nd instance of X (grouped by Group = 1)
5 X 1 2 2nd instance of X (grouped by Group = 1)
6 X 0 3 3rd instance of X (ungrouped)
7 X 0 4 4th instance of X (ungrouped)
8 X 0 5 5th instance of X (ungrouped)
9 B 0 1 1st instance of B (ungrouped)
10 R 0 3 3rd instance of R (ungrouped)
11 R 2 4 4th instance of R (grouped by Group = 2)
12 R 2 4 4th instance of R (grouped by Group = 2)
13 X 3 6 6th instance of X (grouped by Group = 3)
14 X 3 6 6th instance of X (grouped by Group = 3)
15 X 3 6 6th instance of X (grouped by Group = 3)
Any recommendations for doing this? If possible, starting with the dplyr code I use above because I am fairly familiar with it.
Upvotes: 3
Views: 47
Reputation: 887118
If we use rowid
from data.table
, can skip a couple of steps
library(dplyr)
library(data.table)
library(tidyr)
myDF %>%
mutate(reSeq = rowid(Element) * NA^!(Group == 0 |!duplicated(Group))) %>%
group_by(Element) %>%
fill(reSeq) %>%
mutate(reSeq = match(reSeq, unique(reSeq))) %>%
ungroup
-output
# A tibble: 15 × 3
Element Group reSeq
<chr> <dbl> <int>
1 R 0 1
2 R 0 2
3 X 0 1
4 X 1 2
5 X 1 2
6 X 0 3
7 X 0 4
8 X 0 5
9 B 0 1
10 R 0 3
11 R 2 4
12 R 2 4
13 X 3 6
14 X 3 6
15 X 3 6
Upvotes: 1
Reputation: 2043
Below is what I managed to cobble together. Maybe there's a cleaner solution? Here's the code:
library(dplyr)
library(tidyr)
myDF %>%
group_by(Element) %>%
mutate(eleCnt = row_number()) %>%
ungroup()%>%
mutate(reSeq = ifelse(Group == 0 | Group != lag(Group), eleCnt,0)) %>%
mutate(reSeq = na_if(reSeq, 0)) %>%
group_by(Element) %>%
fill(reSeq) %>%
mutate(reSeq = match(reSeq, unique(reSeq))) %>%
ungroup
And here's the output:
# A tibble: 15 x 4
Element Group eleCnt reSeq
<chr> <dbl> <int> <int>
1 R 0 1 1
2 R 0 2 2
3 X 0 1 1
4 X 1 2 2
5 X 1 3 2
6 X 0 4 3
7 X 0 5 4
8 X 0 6 5
9 B 0 1 1
10 R 0 3 3
11 R 2 4 4
12 R 2 5 4
13 X 3 7 6
14 X 3 8 6
15 X 3 9 6
Upvotes: 1