Reputation: 35
I would like to sum values of a dataframe conditionally, based on the values of a different dataframe. Say for example I have two dataframes:
df1 = pd.DataFrame(data = [[1,-1,5],[2,1,1],[3,0,0]],index=[0,1,2],columns = [0,1,2])
index 0 1 2
-----------------
0 1 -1 5
1 2 1 1
2 3 0 0
df2 = pd.DataFrame(data = [[1,1,3],[1,1,2],[0,2,1]],index=[0,1,2],columns = [0,1,2])
index 0 1 2
-----------------
0 1 1 3
1 1 1 2
2 0 2 1
Now what I would like is that for example, if the row/index value of df1 equals 1, to sum the location of those values in df2.
In this example, if the condition is 1, then the sum of df2 would be 4. If the condition was 0, the result would be 3.
Upvotes: 1
Views: 57
Reputation: 13582
Assuming that one wants to store the value in the variable value
, there are various options to achieve that. Will leave below two of them.
Option 1
One can simply do the following
value = df2[df1 == 1].sum().sum()
[Out]: 4.0 # numpy.float64
# or
value = sum(df2[df1 == 1].sum())
[Out]: 4.0 # float
Option 2
Using pandas.DataFrame.where
value = df2.where(df1 == 1, 0).sum().sum()
[Out]: 4.0 # numpy.int64
# or
value = sum(df2.where(df1 == 1, 0).sum())
[Out]: 4 # int
Notes:
Both df2[df1 == 1]
and df2.where(df1 == 1, 0)
give the following output
0 1 2
0 1.0 NaN NaN
1 NaN 1.0 2.0
2 NaN NaN NaN
Depending on the desired output (float
, int
, numpy.float64
,...) one method might be better than the other.
Upvotes: 0