Reputation: 145
I have the following struct:
#[derive(Default)]
pub struct AppState {
actors: HashMap<String, ActorValue>,
feature: HashMap<String, FeatureValue>,
}
Actors are registered when running the application upon receiving a network request (i.e., they are inserted into the HashMap). Furthermore, a user can create a new feature for which a certain actor may be required.
pub enum ActorValue {
Automotive(AutomotiveActor),
Power(PowerActor),
}
pub enum FeatureValue {
Automotive(AutomotiveFeature),
// ....
}
pub struct AutomotiveFeature {
pub actor_name: String,
// ... more Actor-related String fields
}
pub struct AutomotiveActor {
name: String,
// ... more String fields
}
So, when creating an instance of AutomotiveFeature
I am currently cloning the name of the respective AutomotiveActor
instance to populate the actor_name
:
let automotive_actor = app_state.actors.iter()
.find(|x| matches!(x.1, ActorValue::Automotive(_)))
.map(|x| match x.1 {
ActorValue::Automotive(p) => Some(p),
_ => None,
})
.flatten();
match automotive_actor {
Some(a) => {
let feature = AutomotiveFeature { actor_name: a.name.clone() };
}
None => {}
}
However, I am essentially keeping redundant info. Ideally, I could just replace all the String fields relating to the actor in the feature with a reference:
pub struct AutomotiveFeature {
pub actor: &AutomotiveActor
}
But I am getting lifetime issues and I don't know how I can annotate them correctly, considering I have two HashMaps.
If I use:
pub struct AutomotiveFeature {
pub actor: &'static AutomotiveActor
}
I get the following errors:
error[E0502]: cannot borrow `*state` as mutable because it is also borrowed as immutable
--> crates/code/src/my_code.rs:146:13
|
38 | let automotive_actor: Option<&AutomotiveActor> = app_state
| __________________________________________________-
39 | | .actors()
| |_____________________________- immutable borrow occurs here
...
43 | ActorValue::Automotive(p) => Some(p),
| ------- returning this value requires that `*state` is borrowed for `'static`
...
146 | / app_state
147 | | .features_mut()
| |____________________________^ mutable borrow occurs here
error: lifetime may not live long enough
--> crates/code/src/my_code.rs:43:40
|
35 | app_state: &mut AppState,
| - let's call the lifetime of this reference `'1`
...
43 | ActorValue::Automotive(p) => Some(p),
| ^^^^^^^ returning this value requires that `'1` must outlive `'static`
I have already looked at similar post, such as "Store reference of struct in other struct". Unfortunately, I cannot use std::rc::Rc;
because I get the error:
`Rc<AutomotiveActor>` cannot be sent between threads safely
Upvotes: 0
Views: 969
Reputation: 22808
I am getting lifetime issues and I don't know how I can annotate them correctly"
Note that you can only explain to the compiler how long something lives. You can't actually make an object live longer by annotating a lifetime. References do not own an object or keep it alive. Rc
/Arc
actually keep an object alive, so I have a suspicion that this is what you want.
The reason I want to have a reference is that I can then implement methods as part of
AutomotiveActor
and then directly callautomotive_actor.start_car()
I suspect that start_car()
modifies the automotive_actor
and is therefore a mut
fn. This completely renders your initial idea of using references impossible, because you can only ever have one mutable reference to an object.
Rc/Arc
also only provide immutable access to the object, but you can combine them with RefCell
/Mutex
to create interior mutability.
Rc<AutomotiveActor>
cannot be sent between threads safely
This makes me assume that your project is multi-threaded and therefore requires thread safety. This means you probably want to use Arc<Mutex>
.
This is one possible layout:
use std::{
collections::HashMap,
sync::{Arc, Mutex},
};
#[derive(Default)]
pub struct AppState {
actors: HashMap<String, ActorValue>,
feature: HashMap<String, FeatureValue>,
}
pub enum ActorValue {
Automotive(Arc<Mutex<AutomotiveActor>>),
//Power(PowerActor),
}
pub enum FeatureValue {
Automotive(AutomotiveFeature),
// ....
}
pub struct AutomotiveFeature {
pub actor: Arc<Mutex<AutomotiveActor>>,
// ... more Actor-related String fields
}
pub struct AutomotiveActor {
name: String,
// ... more String fields
}
fn main() {
let mut app_state = AppState::default();
let new_actor = Arc::new(Mutex::new(AutomotiveActor {
name: String::from("MyActor"),
}));
app_state.actors.insert(
new_actor.lock().unwrap().name.clone(),
ActorValue::Automotive(Arc::clone(&new_actor)),
);
let automotive_actor = app_state
.actors
.iter()
.find(|x| matches!(x.1, ActorValue::Automotive(_)))
.map(|x| match x.1 {
ActorValue::Automotive(p) => Some(p),
_ => None,
})
.flatten();
match automotive_actor {
Some(a) => {
let feature = AutomotiveFeature {
actor: Arc::clone(a),
};
}
None => {}
}
}
Upvotes: 1