Reputation: 1736
Let's imagine a web service X that has a single purpose - help to integrate two existing services (A and B) having different domain models. Some sort of adapter pattern.
There are cases when A wants to call B, and cases when B wants to call A.
How should endpoints of X be named to make clear for which direction each endpoint is meant?
For example, let's assume that the service A manages "apples". And the service B wants to get updates on "apples".
The adapter service X would have two endpoints:
PUT /apples
- when A wants to push updated "apples" to BGET /apples
- when B wants read "apples" from A
(without awaiting a push from A)Such endpoint structure as above is quite misleading. The endpoints are quite different and use different domain models: PUT-endpoint awaits model of A, and GET-endpoint return model of B.
I would appreciate any advice on designing the API in such a case.
I don't like my own variant:
PUT /gateway-for-A/apples
GET /gateway-for-B/apples
Upvotes: 1
Views: 606
Reputation: 12839
First things first: REST has no endpoints, but resources
Next, in terms of HTTP you should use the same URI for updating the state of a resource and retrieving updates done to it as caching, which basically uses the effective URI of a resource, will automatically invalidate any stored responses for an URI if a non-safe operation is performed on it and forward the request to the actual server. If you split concerns onto different URIs you basically bypass that cache management performed for you under the hood completely.
Note further, HTTP/0.9, HTTP/1.0 and HTTP/1.1 itself don't have a "push" option. It is a request-response protocol and as such if a client is interested in getting updates done to a resource it should poll the respective resource whenever it needs updates. If you need above-mentioned push though you basically need to switch to Web Sockets or the like. While HTTP/2 introduced server push functionality, this effectively just populates your local 2nd level cache preventing the client from effectively requesting the resource and instead using the previously received and cached one.
Such endpoint structure as above is quite misleading. The endpoints are quite different and use different domain models: PUT-endpoint awaits model of A, and GET-endpoint return model of B.
A resource shouldn't map your domain model 1:1. Usually in a REST architecture there can be way more resources than there are entities in your domain model. Just think of form-like resources that explain a client on how to request the creation or update of a resource or the like.
On the Web and therefore also in REST architectures the representation format exchanged should be based on well-defined media-types. These media types should define the syntax and semantics of elements that can be found within an exchanged document of that kind. The elements in particular provide the affordance that tell a client in particular what certain elements can be used for. I.e. a button wants to be pressed while a slider can be dragged left or right to change some numeric values or the like. You never have to frequent any external documentation once support for that media type is added to your client and/or server. A rule of thumb in regards to REST is to design the system as if you'd interact with a traditional Web page and then apply the same concepts you used for interacting with that Web page and translate it onto the REST application domain.
Client and server should furthermore use content-type negotiation to negotiate which representation format the server should generate for responses so that clients can process them. REST is all about indirections that ultimately allow a server to change its internals without affecting clients that behave well negatively. Staying interoperable whilst changing is an inherent design decision of REST. If that is not important to you, REST is probably overkill for your needs and you probably should use something more (Web-) RPC based.
In regards to you actual question, IMO a messaging queue could be a better fit to your problem than trying to force your design onto a REST architecture.
I was hoping that there is a well-known pattern for adapter service (when two different services are being integrated without knowing each other formats)
I'd compare that case with communication attempts among humans stemming from different countries. I.e. imagine a Chines who speaks Mandarin trying to communicate with a Frech. Either the Chinese needs to be able to talk French, the French being able to talk in Mandarin, they both use an intermediary language such as English or they make use of a translator. In terms of trust and cost, the latter option might be the most expansive one of all of these. As learning laguages though is a time-consuming, ongoing process this usually won't happen quickly unless special support is added, by hiring people with that language skills or using external translators.
The beauty of REST is, servers and clients aren't limited to one particular representation format (a.k.a. language). In contrast to traditional RPC services, which limit themselves to one syntax, in REST servers and clients can support a multitude of media types. I.e. your browser knows how to process HTML pages, how to render JPG, PNG, GIF, ... images, how to embed Microsoft Word, Excel, ... documents and so forth. This support was added over the years and allows a browser to basically render a plethora of documents.
So, one option is to either create a translation service that is able to translate one representation to an other and then act as middleman in the process or you directly add support for the non yet understood media types to the service/client directly. The more media-types your client/servers are able to process, the more likely they will be to interoperate with other peers in the network.
The former approach clearly requires that the middleman service is able to at least support the two representation formats issued by A and B but on the other hand allows you to use services not directly under your control. If at least one of the services though is under your control, directly adding the not-yet-supported media type could be potentially less work in the end. Especially when certain library support for the media type is already available or can be obtained easily.
In a REST architecture clients and servers aren't build with the purpose of knowing the other one by heart. This is already a hint that there is a strong coupling between these two. They shouldn't be aware of the others "API" other than that they use HTTP as transport layer and URIs as their addressing scheme. All other stuff are negotiated and discovered on the fly. If they don't share the same language capabilities the server will responde with a 406 Not Accepttable
response that informs a client that they don't speak the same languages and thus won't be able to communicate meaningfully.
As mentioned before, REST is all about introducing indirections to aid in the decoupling intent which allows servers to evolve freely in future without those changes breaking clients as these will just coop with the change. Therefore, eventual change in future is an inherent design concept. If at least one participant in a REST architecture doesn't respect these design concepts they are a potential candidate for introducing the problems traditional RPC services did in the past, like breaking clients on a required change, maintaining v2/3/4/.../n of various different APIs and scaling issues due to the direct coupling of client and servers.
Upvotes: 1
Reputation: 38134
In my view, it is fine, but can be improved:
PUT /gateway-for-A/apples
GET /gateway-for-B/apples
Because
/gateway-for-A/apples
What can be improved:
So I would stick with the foloowing URI:
PUT /a/apples
GET /b/apples
Read more here about Restful API naming conventions
Upvotes: 1
Reputation: 26139
Not sure why you need to distinguish it in the path and why the domain or subdomain is not enough for it:
A: PUT x.example.com/apples -> X: PUT b.example.com/apples
B: GET x.example.com/apples -> X: GET a.example.com/apples
As of the model, you want to do PUSH-PULL in a system which is designed for REQ-REP. Let's translate the upper: pushApples(apples)
and pullApples() -> apples
if this is all they do, then PUT
and GET
are just fine with the /apples
URI if you ask me. Maybe /apples/new
is somewhat more expressive if you need only the updates, but I would rather use if-modified-since
header instead and maybe push with if-unmodified-since
.
Though I think you should describe what the two service does, not what you do with the apples, which appear to be a collection of database entities instead of a web resource, which is several layers above the database. Currently your URIs describe the communication, not the services. For example why is X necessary, why don't they call each other directly? If you can answer that question, then you will understand what X does with the apples and how to name its operations and how to design the URIs and methods which describe them.
Upvotes: 0