Reputation: 403
I want to create a new column in my dataframe with the value of a other row.
DataFrame
TimeStamp Event Value
0 1603822620000 1 102.0
1 1603822680000 1 108.0
2 1603822740000 1 107.0
3 1603822800000 2 1
4 1603823040000 1 106.0
5 1603823100000 2 0
6 1603823160000 2 1
7 1603823220000 1 105.0
I would like to add a new column with the previous value where event = 1.
TimeStamp Event Value PrevValue
0 1603822620000 1 102.0 NaN
1 1603822680000 1 108.0 102.0
2 1603822740000 1 107.0 108.0
3 1603822800000 2 1 107.0
4 1603823040000 1 106.0 107.0
5 1603823100000 2 0 106.0
6 1603823160000 2 1 106.0
7 1603823220000 1 105.0 106.0
So I can't simply use shift(1) and also not groupBy(event).shift(1).
Current solution
df["PrevValue"] =df.timestamp.apply(lambda ts: (df[(df.Event == 1) & (df.timestamp < ts)].iloc[-1].value))
But I guess, that's not the best solution.
Is there something like shiftUntilCondition(condition)
?
Thanks a lot!
Upvotes: 1
Views: 43
Reputation: 323366
Try with
df['new'] = df['Value'].where(df['Event']==1).ffill().shift()
Out[83]:
0 NaN
1 102.0
2 108.0
3 107.0
4 107.0
5 106.0
6 106.0
7 106.0
Name: Value, dtype: float64
Upvotes: 1