hvar
hvar

Reputation: 215

Query with small LIMIT gets slow with many hits

I have a slow Postgres query and I may need better indexes. But I lack experience with indexing, so I just indexed foreign keys. I use Postgres 14.3 and Django 3.0.

This is the slow query. It's only slow when the chat room has a lot of messages (like 10k+).

SELECT
    chat_message.info_date_str,
    auth_user.username,
    chat_message.id,
    chat_message.text_msg,
    chat_message.type_message,
    chat_message.url_file,
    chat_message.url_file,
    chat_message.was_removed,
    chat_message.was_removed
FROM chat_message
INNER JOIN user_profile_userprofile
    ON chat_message.owner_id = user_profile_userprofile.id
INNER JOIN auth_user
    ON user_profile_userprofile.user_id = auth_user.id
WHERE chat_message.chat_room_id = 7204712
AND NOT chat_message.delete_by::text LIKE '%fattimita08%'
ORDER BY chat_message.id DESC
LIMIT 20

Duration: 11956.422

Definitions for involved tables:

CREATE TABLE public.chat_message (
  id integer NOT NULL DEFAULT nextval('chat_message_id_seq'::regclass)
, chat_room_id integer NOT NULL
, owner_id integer NOT NULL
, info_date timestamp with time zone NOT NULL
, aud_msg character varying(500) NOT NULL
, vid_msg character varying(500) NOT NULL
, img_msg character varying(500) NOT NULL
, text_msg text NOT NULL
, type_message smallint NOT NULL
, delete_by character varying(50) NOT NULL
, url_file character varying(1000) NOT NULL
, receiver_id integer
, info_date_str character varying(200) NOT NULL DEFAULT '2019-11-28 23:43:44.578419'
, was_removed boolean NOT NULL DEFAULT false
, CONSTRAINT chat_message_pkey PRIMARY KEY (id)
, CONSTRAINT chat_messag_receiver_id_0eceddde_fk_user_profile_userprofile_id FOREIGN KEY (receiver_id) REFERENCES public.user_profile_userprofile (id) MATCH SIMPLE ON UPDATE NO ACTION ON DELETE NO ACTION DEFERRABLE INITIALLY DEFERRED
, CONSTRAINT chat_message_chat_id_fkey FOREIGN KEY (chat_room_id) REFERENCES public.chat_chat (id) MATCH SIMPLE ON UPDATE CASCADE ON DELETE CASCADE DEFERRABLE INITIALLY DEFERRED
, CONSTRAINT chat_message_owner_id_fkey FOREIGN KEY (owner_id) REFERENCES public.user_profile_userprofile (id) MATCH SIMPLE ON UPDATE CASCADE ON DELETE CASCADE DEFERRABLE INITIALLY DEFERRED
);

CREATE INDEX chat_room_id_idx ON public.chat_message (chat_room_id);
CREATE INDEX owner_id_idx     ON public.chat_message (owner_id);
CREATE INDEX receiver_id_idx  ON public.chat_message (receiver_id);


CREATE TABLE public.user_profile_userprofile (
  id integer NOT NULL DEFAULT nextval('user_profile_userprofile_id_seq'::regclass)
, user_id integer NOT NULL
, birthdate date
, profile_picture character varying(500) NOT NULL
, country character varying(500) NOT NULL
, phrase character varying(300) NOT NULL
, is_mod boolean NOT NULL
, ip inet, id_cel character varying(500) NOT NULL DEFAULT ''
, twitter_key character varying(500) DEFAULT ''
, twitter_secret character varying(500) DEFAULT ''
, gender character varying(500) NOT NULL DEFAULT ''
, lastseen character varying(500) NOT NULL DEFAULT ''
, profile_video character varying(500) NOT NULL DEFAULT ''
, status character varying(500) NOT NULL DEFAULT ''
, name character varying(500) NOT NULL
, "id_timeZone" character varying(500) NOT NULL
, profile_picture_thumb character varying(500) NOT NULL
, city character varying(500) NOT NULL
, CONSTRAINT user_profile_userprofile_pkey PRIMARY KEY (id)
, CONSTRAINT user_profile_userprofile_user_id_key UNIQUE (user_id)
, CONSTRAINT cascade_user FOREIGN KEY (user_id) REFERENCES public.auth_user (id) MATCH SIMPLE ON UPDATE CASCADE ON DELETE CASCADE
);

CREATE UNIQUE INDEX userprofile_user_idx ON public.user_profile_userprofile (user_id);


CREATE TABLE public.auth_user (
  id integer NOT NULL DEFAULT nextval('auth_user_id_seq'::regclass)
, password character varying(128) NOT NULL
, last_login timestamp with time zone
, is_superuser boolean NOT NULL
, username character varying(150) NOT NULL
, first_name character varying(30) NOT NULL
, last_name character varying(30) NOT NULL
, email character varying(254) NOT NULL
, is_staff boolean NOT NULL
, is_active boolean NOT NULL
, date_joined timestamp with time zone NOT NULL
, CONSTRAINT auth_user_pkey PRIMARY KEY (id)
, CONSTRAINT auth_user_username_key UNIQUE (username)
);

CREATE INDEX auth_user_username_like ON public.auth_user (username varchar_pattern_ops);
CREATE INDEX username_idx ON public.auth_user (username);

I used this query to analyze:

EXPLAIN ANALYZE SELECT "chat_message"."info_date_str", "auth_user"."username", "chat_message"."id", "chat_message"."text_msg", "chat_message"."type_message", "chat_message"."url_file", "chat_message"."url_file", "chat_message"."was_removed", "chat_message"."was_removed" FROM "chat_message" INNER JOIN "user_profile_userprofile" ON ("chat_message"."owner_id" = "user_profile_userprofile"."id") INNER JOIN "auth_user" ON ("user_profile_userprofile"."user_id" = "auth_user"."id") WHERE ("chat_message"."chat_room_id" = 7204712 AND NOT ("chat_message"."delete_by"::text LIKE '%fattimita08%')) ORDER BY "chat_message"."id" DESC LIMIT 20
QUERY PLAN
Limit  (cost=33503.90..33614.03 rows=20 width=87) (actual time=5753.937..5754.447 rows=20 loops=1)
  ->  Nested Loop  (cost=33503.90..85612.86 rows=9463 width=87) (actual time=5753.935..5754.443 rows=20 loops=1)
        ->  Nested Loop  (cost=33503.48..63940.73 rows=9463 width=80) (actual time=5753.923..5754.399 rows=20 loops=1)
              ->  Gather Merge  (cost=33503.06..34605.18 rows=9463 width=80) (actual time=5753.893..5754.349 rows=20 loops=1)
                    Workers Planned: 2
                    Workers Launched: 0
                    ->  Sort  (cost=32503.03..32512.89 rows=3943 width=80) (actual time=5753.535..5753.540 rows=20 loops=1)
                          Sort Key: chat_message.id DESC
                          Sort Method: quicksort  Memory: 2477kB
                          ->  Parallel Bitmap Heap Scan on chat_message  (cost=129.77..32267.53 rows=3943 width=80) (actual time=81.934..5741.308 rows=10447 loops=1)
                                Recheck Cond: (chat_room_id = 7204712)
                                Filter: ((delete_by)::text !~~ '%fattimita08%'::text)
                                Rows Removed by Filter: 1
                                Heap Blocks: exact=8278
                                ->  Bitmap Index Scan on chat_room_id_idx  (cost=0.00..127.41 rows=9463 width=0) (actual time=63.921..63.922 rows=10448 loops=1)
                                      Index Cond: (chat_room_id = 7204712)
              ->  Memoize  (cost=0.43..4.95 rows=1 width=8) (actual time=0.002..0.002 rows=1 loops=20)
                    Cache Key: chat_message.owner_id
                    Cache Mode: logical
                    Hits: 18  Misses: 2  Evictions: 0  Overflows: 0  Memory Usage: 1kB
                    ->  Index Scan using user_profile_userprofile_pkey on user_profile_userprofile  (cost=0.42..4.94 rows=1 width=8) (actual time=0.012..0.012 rows=1 loops=2)
                          Index Cond: (id = chat_message.owner_id)
        ->  Index Scan using auth_user_pkey on auth_user  (cost=0.42..2.29 rows=1 width=13) (actual time=0.002..0.002 rows=1 loops=20)
              Index Cond: (id = user_profile_userprofile.user_id)
Planning Time: 43.104 ms
Execution Time: 5754.630 ms

Upvotes: 0

Views: 404

Answers (1)

Erwin Brandstetter
Erwin Brandstetter

Reputation: 658857

The main hardship for this query is that it filters by chat_room_id, but sorts by id (descending) - before a very small LIMIT.

Postgres expects the filter chat_room_id = 7204712 to be selective and starts with a bitmap heap scan on chat_room_id_idx, finding ~ 10k rows.

The additional filter AND NOT chat_message.delete_by::text LIKE '%fattimita08%' seems hardly selective. (BTW, the cast (::text) in that expression does nothing useful, drop it.)

This multicolumn index should give you faster results, by orders of magnitude:

CREATE INDEX chat_message_your_name_here_idx ON public.chat_message (chat_room_id, id DESC);

Now Postgres can just walk the index with an index scan, and filter the few rows that should not qualify.

Related:

That said, the Parallel Bitmap Heap Scan on chat_message is responsible for the lion share of the cost - a cost that seems excessive for just rows=10447. Is that table particularly big? Do you have decent hardware? Maybe the table is bloated? Are matching rows spread out over the big table physically? Depending on the actual diagnosis, VACUUM, or even VACUUM FULL, or better yet CLUSTER on the new index might help (a lot). Like:

CLUSTER public.chat_message USING chat_message_your_name_here_idx;

Be aware that's expensive and blocking for a big table. There are non-blocking alternatives. See:

Upvotes: 4

Related Questions