Reputation: 578
I am training a CNN model where,
code snippet:
train_datagen = ImageDataGenerator(
rescale=1./255,
# rotation_range=30,
zoom_range=0.1,
horizontal_flip=True,
# vertical_flip=True,
# fill_mode='nearest',
validation_split=.15) # set validation split
val_datagen = ImageDataGenerator(rescale=1./255, validation_split=0.15)
train_generator = train_datagen.flow_from_directory(
train_dir,
target_size=(height, width),
batch_size=batch_size,
class_mode='categorical',
seed=13
)
validation_generator = val_datagen.flow_from_directory(
train_dir, # same directory as training data
target_size=(height, width),
batch_size=batch_size,
class_mode='categorical',
seed=13,
subset='validation'
)
model = Sequential()
model.add(Conv2D(16,3,padding="same", activation="relu", input_shape=(height, width, 3)))
model.add(AveragePooling2D(strides=(2,2), padding="same"))
# model.add(Dropout(0.2))
model.add(Conv2D(32,3,padding="same", activation="relu"))
model.add(AveragePooling2D(strides=(2,2), padding="same"))
# model.add(Dropout(0.2))
model.add(Conv2D(32, 3, padding="same", activation="relu"))
model.add(AveragePooling2D(strides=(2,2), padding="same"))
# model.add(Dropout(0.2))
# model.add(Conv2D(32, 3, padding="same", activation="relu", kernel_regularizer=l2(0.0001)))
# model.add(AveragePooling2D(strides=(2,2), padding="same"))
# model.add(Dropout(0.4))
model.add(Conv2D(64, 3, padding="same", activation="relu"))
model.add(AveragePooling2D(strides=(2,2), padding="same",))
# model.add(Dropout(0.2))
model.add(Conv2D(64, 3, padding="same", activation="relu"))
model.add(AveragePooling2D(strides=(2,2), padding="same"))
# model.add(Dropout(0.2))
model.add(Conv2D(128, 3, padding="same", activation="relu"))
model.add(AveragePooling2D(strides=(2,2), padding="same"))
# model.add(Dropout(0.2))
model.add(Conv2D(128, 3, padding="same", activation="relu"))
model.add(AveragePooling2D(strides=(2,2), padding="same"))
# model.add(Dropout(0.2))
model.add(Conv2D(256, 3, padding="same", activation="relu"))
model.add(AveragePooling2D(strides=(2,2), padding="same"))
# model.add(Dropout(0.2))
model.add(Flatten())
model.add(Dense(256,activation="relu"))
model.add(Dropout(.5))
# model.add(Dense(256,activation="relu"))
# model.add(Dropout(.5))
model.add(Dense(4, activation="softmax"))
model.summary()
Adam(learning_rate=0.0001, name='Adam')
model.compile(optimizer = 'Adam',loss = 'categorical_crossentropy',metrics = ['accuracy'])
I've done few things to solve this problem:
What could be the cause of this issue and how can it be resolved? How can I display test images in Python that have high levels of inaccuracy?
Upvotes: 2
Views: 364
Reputation: 1582
You need to add subset='training'
in train_generator
. Right now, you are training on both training and validation data.
train_generator = train_datagen.flow_from_directory(
train_dir,
target_size=(height, width),
batch_size=batch_size,
class_mode='categorical',
seed=13,
subset='training'
)
Upvotes: 1