Reputation: 361
Implemented interrupt function on TIMER1 on PIC16F877A MCU on PIC-DIP40 development board. Configured the timer Prescaler to 1
and auto preload value to 55536
so that the interrupt time is 0.01s
. Using a counter of 100
to count 1s
interval. The Fosc is 4Mhz
. So my calculation is :
interrupt time = (4 / Fosc) * (65536 - 55536) = (4/4000000) * (65536 - 55536) = 0.01 s
And used a counter of 100
to generate a 1s
interval.
Currently, I have no oscilloscope to test the actual 1s interval so, I am blinking an LED (LED2) on the timer interrupt and another LED (LED1) on the same time interval 1s
using __delay_ms(1000);
function.
So as expected the two LEDs will blink synchronously (Turn ON and OFF at the same Time). But for some first iterations, they blink synchronously. After some iterations, there is a clear difference in time between their blinking time (Turning ON and OFF time). After several minutes the difference is almost 1s. So the timer interrupt is not working as expected.
So is my calculation wrong for interrupt time or I am missing something in the timer1 configuration?
The overall goal is to generate a 1s time interval and test the validity without using an oscilloscope.
Here is my code :
// CONFIG
#pragma config FOSC = HS // Oscillator Selection bits (HS oscillator)
#pragma config WDTE = OFF // Watchdog Timer Enable bit (WDT disabled)
#pragma config PWRTE = OFF // Power-up Timer Enable bit (PWRT disabled)
#pragma config BOREN = OFF // Brown-out Reset Enable bit (BOR disabled)
#pragma config LVP = OFF // Low-Voltage (Single-Supply) In-Circuit Serial Programming Enable bit (RB3 is digital I/O, HV on MCLR must be used for programming)
#pragma config CPD = OFF // Data EEPROM Memory Code Protection bit (Data EEPROM code protection off)
#pragma config WRT = OFF // Flash Program Memory Write Enable bits (Write protection off; all program memory may be written to by EECON control)
#pragma config CP = OFF // Flash Program Memory Code Protection bit (Code protection off)
#include <xc.h>
#include <pic16f877a.h>
#define _XTAL_FREQ 4000000
#define LED1_ON PORTDbits.RD7 = 0
#define LED1_OFF PORTDbits.RD7 = 1
#define LED2_ON PORTDbits.RD6 = 0
#define LED2_OFF PORTDbits.RD6 = 1
#define LED2_TOGGLE PORTDbits.RD6 = ~PORTDbits.RD6
uint16_t preloadValue = 55536 ;
uint16_t counter = 0 ;
uint16_t secCounter1 = 100 ;
void io_config() {
TRISD &= ~((1 << _PORTD_RD7_POSITION) | (1 << _PORTD_RD6_POSITION)) ; //RD7 and RD6 are output LEDs
}
void timer1_init(){
TMR1 = preloadValue ; //loading the preload value
T1CON &= ~((1 << _T1CON_T1CKPS1_POSN) | (1 << _T1CON_T1CKPS0_POSN) | (1 << _T1CON_TMR1CS_POSN)) ; //prescalar is 1 clock is Fosc
T1CONbits.TMR1ON = 1 ; //timer 1 is ON
LED2_ON ;
}
void interrupt_en_configure(){
INTCON |= (1 << _INTCON_GIE_POSITION) | (1 << _INTCON_PEIE_POSITION) ; //global and peripheral interrupt on
PIE1 |= _PIE1_TMR1IE_MASK ; //timer 1 interrupt enable
TMR1IF = 0 ; //clearing interupt flag
}
void __interrupt() ISR(){
if(TMR1IF){
counter ++ ;
if (counter == secCounter1){
counter = 0 ;
LED2_TOGGLE ;
}
TMR1 = preloadValue ;
TMR1IF = 0 ;
}
}
void main(void) {
io_config();
interrupt_en_configure() ;
timer1_init() ;
while (1) {
LED1_ON ;
__delay_ms(1000);
LED1_OFF ;
__delay_ms(1000);
}
}
Upvotes: 0
Views: 581
Reputation: 93566
You should not expect them to operate synchronously for the following reasons:
First you do not know how __delay_ms()
is implemented or any "promises" of precision it may make - it is certainly not using TIMER1, because you are controlling that. In fact the documentation gives some implementation details, and you really cannot expect precision.
Secondly, even if __delay_ms()
were both accurate and synchronous, you are invoking it in a loop with the software overhead of the loop, function call and whatever you are doing to toggle the LED. That is a few cycles on every iteration that do not affect the interrupt interval which is locked to the hardware, and independent of the software timing.
The issue of precision of __delay_ms()
is in fact addressed in this Microchip support article where it starts:
If an accurate delay is required, or if there are other tasks that can be performed during the delay, then using a timer to generate an interrupt is the best way to proceed.
In this case you should trust your code over the library provided delay which is intentionally crude (because it does not use up a valuable H/W timer resource).
Upvotes: 2
Reputation: 12673
__delay_ms()
delays by running an empty loop, but it commonly cannot be exact. You would need to look into the actual machine code that is run to calculate the real delay. BTW, this is not rocket science and a great learning task. (Been there, done that.)
Now the rest of your loop (LED switching, looping) adds to this. Therefore, your pure software driven blinker is not exact.
However, your interrupt driven blinker is not, too. You reset the timer at the end of the ISR, after several clock cycles have passed. You need to take this into account, and don't forget the interrupt latency. Even worse, depending on the conditional statement, the reset happens at different times after the timer overflow.
Producing exact timing is difficult, especially with such a simple device.
The solution is to avoid software at all for the reset of the timer. Please read chapter 8 of the data sheet and use the capture/compare/PWM module to reset the timer on the appropriate value.
The worst thing that could still happen is some jitter, just because the ISR might have different latencies. But the timer runs as exactly as your system's crystal. In average your LED will blink correctly.
Anyway, if your timing requirements are not that hard, consider to live with some inaccuracy. Then use the most simple solution you like best.
Upvotes: 1