Reputation: 55
last-non-zero
takes a list of numbers and return the last cdr
whose car
is 0.
So, I can implement it using continuations, but how do I do this with natural recursion.
(define last-non-zero
(lambda (ls)
(let/cc return
(letrec
((lnz
(lambda (ls)
(cond
((null? ls) '())
((zero? (car ls)) ;; jump out when we get to last 0.
(return (lnz (cdr ls))))
(else
(cons (car ls) (lnz (cdr ls))))))))
(lnz ls)))))
Upvotes: 2
Views: 110
Reputation: 9930
Also possible, to use foldr
:
(define (last-non-zero l)
(reverse (foldl (lambda (e res) (if (zero? e) '() (cons e res))) 0 l)))
Or use recursion:
(define (last-non-zero l (res '()))
(cond ((empty? l) res)
((zero? (car l)) (last-non-zero (cdr l) (cdr l)))
(else (last-non-zero (cdr l) res))))
Upvotes: 0
Reputation: 15803
(define last-non-zero
(lambda (l)
((lambda (s) (s s l (lambda (x) x)))
(lambda (s l* ret)
(if (null? l*)
(ret '())
(let ((a (car l*))
(r (cdr l*)))
(if (zero? a)
(s s r (lambda (x) x))
(s s r
(lambda (r)
(ret (cons a r)))))))))))
Upvotes: 0
Reputation: 48765
Using your implementation where you return the argument in the event there are no zero you can just have a variable to keep the value you think has no zero values until you hit it and then update both:
(define (last-non-zero lst)
(let loop ((lst lst) (result lst))
(cond ((null? lst) result)
((zero? (car lst)) (loop (cdr lst) (cdr lst)))
(else (loop (cdr lst) result)))))
(last-non-zero '()) ; ==> ()
(last-non-zero '(2 3)) ; ==> (2 3)
(last-non-zero '(2 3 0)) ; ==> ()
(last-non-zero '(2 3 0 1 2)) ; ==> (1 2)
Upvotes: 0
Reputation: 9282
Here's an obvious version which is not tail-recursive:
(define (last-non-zero l)
;; Return the last cdr of l which does not contain zero
;; or #f if there is none
(cond
((null? l)
#f)
((zero? (car l))
(let ((lnzc (last-non-zero (cdr l))))
;; This is (or lnzc (cdr l)) but that makes me feel bad
(if lnzc
lnzc
(cdr l))))
(else
(last-non-zero (cdr l)))))
Here is that version turned into a tail-recursive equivalent with also the zero test moved around a bit.
(define (last-non-zero l)
(let lnzl ([lt l]
[r #f])
(if (null? lt)
r
(lnzl (cdr lt) (if (zero? (car lt)) (cdr lt) r)))))
It's much clearer in this last version that the list is traversed exactly once.
Upvotes: 1
Reputation: 52539
Racket's takef-right
can do it:
> (takef-right '(1 2 0 3 4 0 5 6 7) (lambda (n) (not (zero? n))))
'(5 6 7)
But assuming you have an assignment where you're supposed to write the logic yourself instead of just using a built in function, one easy if not very efficient approach is to reverse the list, build a new list out of everything up to the first zero, and return that. Something like:
(define (last-non-zero ls)
(let loop ([res '()]
[ls (reverse ls)])
(if (or (null? ls) (zero? (car ls)))
res
(loop (cons (car ls) res) (cdr ls)))))
Upvotes: 1
Reputation: 1732
Please indicate if I have correctly understood the problem:
#lang scheme
; returns cdr after last zero in lst
(define (last-non-zero lst)
; a helper function with 'saved' holding progress
(define (lnz-iter lst saved)
(if (null? lst)
saved
(if (zero? (car lst))
(lnz-iter (cdr lst) (cdr lst))
(lnz-iter (cdr lst) saved))))
(lnz-iter lst '()))
(last-non-zero '(1 2 3 0 7 9)) ; result (7 9)
Upvotes: 1