Reputation: 61
Any experts with a deep understanding of ELF loading, could you please explain to me why the following ELF file throws a Segmentation fault
(errno=139)?
ELF Header:
Magic: 7f 45 4c 46 02 01 01 00 00 00 00 00 00 00 00 00
Class: ELF64
Data: 2's complement, little endian
Version: 1 (current)
OS/ABI: UNIX - System V
ABI Version: 0
Type: EXEC (Executable file)
Machine: Advanced Micro Devices X86-64
Version: 0x1
Entry point address: 0x131a
Start of program headers: 64 (bytes into file)
Start of section headers: 232 (bytes into file)
Flags: 0x0
Size of this header: 64 (bytes)
Size of program headers: 56 (bytes)
Number of program headers: 3
Size of section headers: 64 (bytes)
Number of section headers: 8
Section header string table index: 7
Section Headers:
[Nr] Name Type Address Offset
Size EntSize Flags Link Info Align
[ 0] null NULL 0000000000000000 00000000
0000000000000000 0000000000000000 0 0 0
[ 1] .init PROGBITS 000000000000131a 0000031a
0000000000000001 0000000000000000 AX 0 0 1
[ 2] .text PROGBITS 000000000000131b 0000031b
0000000000000096 0000000000000000 AX 0 0 1
[ 3] .fini PROGBITS 00000000000013b1 000003b1
0000000000000001 0000000000000000 AX 0 0 1
[ 4] .rodata PROGBITS 00000000000013b2 000003b2
0000000000000014 0000000000000000 A 0 0 1
[ 5] .data PROGBITS 00000000000013c6 000003c6
000000000000001e 0000000000000000 A 0 0 1
[ 6] .bss NOBITS 00000000000013e4 000003e4
0000000000000000 0000000000000000 WA 0 0 1
[ 7] strtab STRTAB 00000000000012e8 000002e8
0000000000000032 0000000000000000 AS 0 0 1
Key to Flags:
W (write), A (alloc), X (execute), M (merge), S (strings), I (info),
L (link order), O (extra OS processing required), G (group), T (TLS),
C (compressed), x (unknown), o (OS specific), E (exclude),
l (large), p (processor specific)
Program Headers:
Type Offset VirtAddr PhysAddr
FileSiz MemSiz Flags Align
LOAD 0x000000000000031a 0x000000000000131a 0x000000000000131a
0x0000000000000098 0x0000000000000098 R E 0x1000
LOAD 0x00000000000003b2 0x00000000000013b2 0x00000000000013b2
0x0000000000000014 0x0000000000000014 R 0x1000
LOAD 0x00000000000003c6 0x00000000000013c6 0x00000000000013c6
0x000000000000001e 0x000000000000101e RW 0x1000
Section to Segment mapping:
Segment Sections...
00 .init .text .fini
01 .rodata
02 .data .bss
The exact same executable with the following file alignment changes works fine:
ELF Header:
Magic: 7f 45 4c 46 02 01 01 00 00 00 00 00 00 00 00 00
Class: ELF64
Data: 2's complement, little endian
Version: 1 (current)
OS/ABI: UNIX - System V
ABI Version: 0
Type: EXEC (Executable file)
Machine: Advanced Micro Devices X86-64
Version: 0x1
Entry point address: 0x10400
Start of program headers: 64 (bytes into file)
Start of section headers: 232 (bytes into file)
Flags: 0x0
Size of this header: 64 (bytes)
Size of program headers: 56 (bytes)
Number of program headers: 3
Size of section headers: 64 (bytes)
Number of section headers: 8
Section header string table index: 7
Section Headers:
[Nr] Name Type Address Offset
Size EntSize Flags Link Info Align
[ 0] null NULL 0000000000000000 00000000
0000000000000000 0000000000000000 0 0 0
[ 1] .init PROGBITS 0000000000010400 00000400
0000000000000001 0000000000000000 AX 0 0 1
[ 2] .text PROGBITS 0000000000010800 00000800
0000000000000096 0000000000000000 AX 0 0 1
[ 3] .fini PROGBITS 0000000000010c00 00000c00
0000000000000001 0000000000000000 AX 0 0 1
[ 4] .rodata PROGBITS 0000000000011000 00001000
0000000000000014 0000000000000000 A 0 0 1
[ 5] .data PROGBITS 0000000000011400 00001400
000000000000001e 0000000000000000 A 0 0 1
[ 6] .bss NOBITS 0000000000011800 00001800
0000000000000000 0000000000000000 WA 0 0 1
[ 7] strtab STRTAB 00000000000102e8 000002e8
0000000000000032 0000000000000000 AS 0 0 1
Key to Flags:
W (write), A (alloc), X (execute), M (merge), S (strings), I (info),
L (link order), O (extra OS processing required), G (group), T (TLS),
C (compressed), x (unknown), o (OS specific), E (exclude),
l (large), p (processor specific)
Program Headers:
Type Offset VirtAddr PhysAddr
FileSiz MemSiz Flags Align
LOAD 0x0000000000000400 0x0000000000010400 0x0000000000010400
0x0000000000000801 0x0000000000000801 R E 0x1
LOAD 0x0000000000001000 0x0000000000011000 0x0000000000011000
0x0000000000000014 0x0000000000000014 R 0x1
LOAD 0x0000000000001400 0x0000000000011400 0x0000000000011400
0x000000000000001e 0x000000000000101e RW 0x1
Section to Segment mapping:
Segment Sections...
00 .init .text .fini
01 .rodata
02 .data .bss
In both cases it holds that:
sh_addr mod sh_addralign = 0
andp_vaddr mod PAGESIZE = p_offset
. (Pagesize acquired with getconf PAGESIZE
).I appreciate your help - thank you very much in advance.
UPDATE:
I realized that my LOAD
segments were overlapping in virtual memory in the first readelf printout that I posted. I have corrected this now, but for the now non-overlapping LOAD
segments I still get a segmentation fault when my start virtual memory address for the first page is at 0x0 (same if it is at 0x1000, i.e. one page size higher):
ELF Header:
Magic: 7f 45 4c 46 02 01 01 00 00 00 00 00 00 00 00 00
Class: ELF64
Data: 2's complement, little endian
Version: 1 (current)
OS/ABI: UNIX - System V
ABI Version: 0
Type: EXEC (Executable file)
Machine: Advanced Micro Devices X86-64
Version: 0x1
Entry point address: 0x31a
Start of program headers: 64 (bytes into file)
Start of section headers: 232 (bytes into file)
Flags: 0x0
Size of this header: 64 (bytes)
Size of program headers: 56 (bytes)
Number of program headers: 3
Size of section headers: 64 (bytes)
Number of section headers: 8
Section header string table index: 7
Section Headers:
[Nr] Name Type Address Offset
Size EntSize Flags Link Info Align
[ 0] null NULL 0000000000000000 00000000
0000000000000000 0000000000000000 0 0 0
[ 1] .init PROGBITS 000000000000031a 0000031a
0000000000000001 0000000000000000 AX 0 0 0
[ 2] .text PROGBITS 000000000000031b 0000031b
0000000000000076 0000000000000000 AX 0 0 0
[ 3] .fini PROGBITS 0000000000000391 00000391
0000000000000001 0000000000000000 AX 0 0 0
[ 4] .rodata PROGBITS 0000000000001392 00000392
0000000000000014 0000000000000000 A 0 0 0
[ 5] .data PROGBITS 00000000000023a6 000003a6
000000000000001e 0000000000000000 A 0 0 0
[ 6] .bss NOBITS 00000000000023c4 000003c4
0000000000000000 0000000000000000 WA 0 0 0
[ 7] strtab STRTAB 00000000000002e8 000002e8
0000000000000032 0000000000000000 AS 0 0 1
Key to Flags:
W (write), A (alloc), X (execute), M (merge), S (strings), I (info),
L (link order), O (extra OS processing required), G (group), T (TLS),
C (compressed), x (unknown), o (OS specific), E (exclude),
l (large), p (processor specific)
Program Headers:
Type Offset VirtAddr PhysAddr
FileSiz MemSiz Flags Align
LOAD 0x000000000000031a 0x000000000000031a 0x000000000000031a
0x0000000000000078 0x0000000000000078 R E 0x1000
LOAD 0x0000000000000392 0x0000000000001392 0x0000000000001392
0x0000000000000014 0x0000000000000014 R 0x1000
LOAD 0x00000000000003a6 0x00000000000023a6 0x00000000000023a6
0x000000000000001e 0x0000000000000082 RW 0x1000
Section to Segment mapping:
Segment Sections...
00 .init .text .fini
01 .rodata
02 .data .bss
When I change the start address to 0x10000 (PAGESIZE * 16), then the segmentation fault disappears. Any ideas why that is?
ELF Header:
Magic: 7f 45 4c 46 02 01 01 00 00 00 00 00 00 00 00 00
Class: ELF64
Data: 2's complement, little endian
Version: 1 (current)
OS/ABI: UNIX - System V
ABI Version: 0
Type: EXEC (Executable file)
Machine: Advanced Micro Devices X86-64
Version: 0x1
Entry point address: 0x1031a
Start of program headers: 64 (bytes into file)
Start of section headers: 232 (bytes into file)
Flags: 0x0
Size of this header: 64 (bytes)
Size of program headers: 56 (bytes)
Number of program headers: 3
Size of section headers: 64 (bytes)
Number of section headers: 8
Section header string table index: 7
Section Headers:
[Nr] Name Type Address Offset
Size EntSize Flags Link Info Align
[ 0] null NULL 0000000000000000 00000000
0000000000000000 0000000000000000 0 0 0
[ 1] .init PROGBITS 000000000001031a 0000031a
0000000000000001 0000000000000000 AX 0 0 0
[ 2] .text PROGBITS 000000000001031b 0000031b
0000000000000076 0000000000000000 AX 0 0 0
[ 3] .fini PROGBITS 0000000000010391 00000391
0000000000000001 0000000000000000 AX 0 0 0
[ 4] .rodata PROGBITS 0000000000011392 00000392
0000000000000014 0000000000000000 A 0 0 0
[ 5] .data PROGBITS 00000000000123a6 000003a6
000000000000001e 0000000000000000 A 0 0 0
[ 6] .bss NOBITS 00000000000123c4 000003c4
0000000000000000 0000000000000000 WA 0 0 0
[ 7] strtab STRTAB 00000000000002e8 000002e8
0000000000000032 0000000000000000 AS 0 0 1
Key to Flags:
W (write), A (alloc), X (execute), M (merge), S (strings), I (info),
L (link order), O (extra OS processing required), G (group), T (TLS),
C (compressed), x (unknown), o (OS specific), E (exclude),
l (large), p (processor specific)
Program Headers:
Type Offset VirtAddr PhysAddr
FileSiz MemSiz Flags Align
LOAD 0x000000000000031a 0x000000000001031a 0x000000000001031a
0x0000000000000078 0x0000000000000078 R E 0x1000
LOAD 0x0000000000000392 0x0000000000011392 0x0000000000011392
0x0000000000000014 0x0000000000000014 R 0x1000
LOAD 0x00000000000003a6 0x00000000000123a6 0x00000000000123a6
0x000000000000001e 0x0000000000000082 RW 0x1000
Section to Segment mapping:
Segment Sections...
00 .init .text .fini
01 .rodata
02 .data .bss
UPDATE 2: Thank you Employed Russian for your answer and ideas. I wanted to share the following update on my own research:
After digging a bit more, I ran across the following line in an Oracle document about program loading:
By default, 64–bit SPARC programs are linked with a starting address of 0x100000000. The whole program is located above 4 gigabytes, including its text, data, heap, stack, and shared object dependencies. This helps ensure that 64–bit programs are correct because the program will fault in the least significant 4 gigabytes of its address space if the program truncates any of its pointers. While 64–bit programs are linked above 4 gigabytes, you can still link programs below 4 gigabytes by using a mapfile and the -M option to the link-editor. See /usr/lib/ld/sparcv9/map.below4G.
(Source: https://docs.oracle.com/cd/E19120-01/open.solaris/819-0690/chapter6-34713/index.html)
Now I am aware the information from that link is awfully specific, but I was nonetheless wondering if there could be some more universal truth to this on other platforms, or at least point me in the right direction.
So I wrote a tiny test program in C and compiled it in two different ways:
gcc test.c
- ELF type is ET_DYN
/ shared object file and no default virtual address offset is used for the LOAD
segments:Type Offset VirtAddr PhysAddr FileSiz MemSiz Flg Align
LOAD 0x000000 0x0000000000000000 0x0000000000000000 0x0005c8 0x0005c8 R 0x1000
LOAD 0x001000 0x0000000000001000 0x0000000000001000 0x0001c5 0x0001c5 R E 0x1000
LOAD 0x002000 0x0000000000002000 0x0000000000002000 0x000130 0x000130 R 0x1000
LOAD 0x002df0 0x0000000000003df0 0x0000000000003df0 0x000220 0x000228 RW 0x1000
gcc -static test.c
- ELF type is ET_EXEC
/ executable and default virtual address offset of 0x400000
is used:Type Offset VirtAddr PhysAddr FileSiz MemSiz Flg Align
LOAD 0x000000 0x0000000000400000 0x0000000000400000 0x000518 0x000518 R 0x1000
LOAD 0x001000 0x0000000000401000 0x0000000000401000 0x0936dd 0x0936dd R E 0x1000
LOAD 0x095000 0x0000000000495000 0x0000000000495000 0x02664d 0x02664d R 0x1000
LOAD 0x0bc0c0 0x00000000004bd0c0 0x00000000004bd0c0 0x005170 0x0068c0 RW 0x1000
Any ideas why that is? I know it possibly has to do with position-independent code, but I do not understand the necessity for an offset if absolute code is used (as in 2. above). Thanks.
Upvotes: 3
Views: 473
Reputation: 213955
When I change the start address to
0x10000
(PAGESIZE * 16), then the segmentation fault disappears. Any ideas why that is?
This was mentioned in the comments to this answer:
Why does loading at
0x10000
work but at0x1000
doesn't? Does this depend on the kernel or the hardware? How do I pick the right number here?
Some code in the kernel doesn't like to use addresses below 0x10000
, but I have not found that code.
I've tried to load a binary with first PT_LOAD.p_vaddr == 0x1000
into UML kernel (which is easy to debug), but that actually worked, so specific kernel code which prohibits this may be architecture-dependent.
Upvotes: 2