Reputation: 65
I have dataframe table having values :
id Country Interest
00 Russian Digestion;Destillation
I want to pivot the Interest column and name new column in azure databricks in python like this :
id Country Int Interest
00Q7 Russ Digestion Digestion;Destillation
00Q7 Russ Destillation Digestion;Destillation
Please advise how it can be done
Regards RK
Upvotes: 0
Views: 234
Reputation: 6104
I have created a sample dataframe similar to yours using the following code:
data = [['00Q7','Russian Federation','Digestion;Destillation'],['00Q6','United States','Oils;Automobiles']]
df = spark.createDataFrame(data=data,schema = ['id','country','interests'])
display(df)
interests
column using pyspark.sql.functions.split
.from pyspark.sql.functions import split,col
df1 = df.withColumn("interest", split(col("interests"), ";"))
display(df1)
interest
using pyspark.sql.functions.explode
to get the required output.from pyspark.sql.functions import explode
op = df1.withColumn('interest',explode(col('interest')))
display(op)
UPDATE:
data = [['00Q7','Russian Federation','01_Digestion;02_Destillation']]
df = spark.createDataFrame(data=data,schema = ['id','country','interests'])
#display(df)
from pyspark.sql.functions import split,col
df1 = df.withColumn("interest", split(col("interests"), ";"))
from pyspark.sql.functions import explode
op = df1.withColumn('interest',explode(col('interest')))
#UPDATE
from pyspark.sql.functions import concat,lit
op.withColumn("set",concat(lit('Set'),split(col('interest'),'_').getItem(0))).show(truncate=False)
UPDATE-2:
pdf['set']= pdf['interest'].str.split('_').str[0]
import numpy as np
pdf["set"] = np.where(pdf["set"].astype(int)<10 , 'Set'+pdf['set'].str[1], 'Set'+pdf['set'])
Upvotes: 1