Reputation: 911
I have this dataframe that I applied multinom
function
df = data.frame(x = c('a','a','b','b','c','c','d','d','d','e','e','f','f',
'f','f','g','g','g','h','h','h','h','i','i','j','j'),
y = c(1,2,1,3,1,2,1,4,5,1,2,2,3,4,5,1,1,2,1,2,2,3,2,2,3,4) )
df$y = factor(df$y,ordered = TRUE)
nnet::multinom(y~x, data = df)
when checking the output, I have all the variables with their coefficients (meaning everything is fine)
Coefficients:
(Intercept) xb xc xd xe xf
2 -6.045294e-05 -31.83512 3.800915e-05 -36.67053 3.800915e-05 25.00515
3 -1.613311e+01 16.13310 -1.725649e+01 -21.06832 -1.725649e+01 41.13825
4 -1.692352e+01 -14.71119 -1.428100e+01 16.92351 -1.428100e+01 41.92865
5 -2.129358e+01 -10.49359 -1.002518e+01 21.29353 -1.002518e+01 46.29867
xg xh xi xj
2 -0.6931261 0.6932295 40.499799 -25.311410
3 -24.0387863 16.1332150 -8.876562 45.191730
4 -20.2673490 -16.0884760 -6.394423 45.982129
5 -15.1755064 -11.8589447 -4.563793 -6.953942
but my original dataframe (will share only the output) that is coded as the dependent and independent variables from the df dataframe (meaning as ordinal factors) and all the analysis is well done but when it comes to interpretation I have this output :
Coefficients:
(Intercept) FIES_R.L FIES_R.Q FIES_R.C FIES_R^4 FIES_R^5
2 -0.09594409 -1.303256 0.03325169 -0.1753022 -0.46026668 -0.282463422
3 -0.18587599 -1.469957 0.42005569 -0.2977628 0.00508412 0.003068678
4 -0.58189239 -2.875183 0.33128994 -0.6787992 0.11145099 0.239368520
5 -2.68727952 -10.178604 -5.12515249 -5.8454920 -3.13775961 -1.820629143
FIES_R^6 FIES_R^7 FIES_R^8
2 -0.2179067 -0.1000471 -0.1489342
3 0.1915476 -0.5483707 -0.2565626
4 0.2585801 0.3821566 -0.2679774
5 -0.5562958 -0.6335412 -0.7205215
I don't want FIES_R.L,FIES_R.Q and FIES_R.C. I want them as : FIES_R_1, FIES_R_2, FIES_R_3, FIES_R_4, FIES_R_5, FIES_R_6, FIES_R_7, FIES_R_8, why I have such an output ? knowing that the two dataframes include ordinal categorical variables and the x variable and the FIES variable include many categories in both dataframes. Thanks
Upvotes: 1
Views: 242
Reputation: 4456
You can change the coefnames "by hand":
mod = nnet::multinom(y~x, data = df)
mod$vcoefnames = c("(Intercept)", paste0(substr(mod$vcoefnames, 1, 6), "_", 1:8))
Upvotes: 1
Reputation: 911
I just figured it out : because the independent variable is an ordinal factor. Meaning FIES in my dataset in an ordinal factor. When I used the argument ordered = FALSE
the problem got solved
Upvotes: 1