Reputation: 445
I run three different estimations of panel linear models (fixed effects model with two fixed effect (id and year)).
fixed_YIELD_mean_to_treat.100 <- plm(YIELD_mean_total ~ treated.100 + Nightlight_sum + Population_sum + temp_mean, data= Results, index = c("id", "year"), model = "within")
fixed_YIELD_mean_fruits_treat.100<- plm(YIELD_mean_Fruit ~ treated.100 + Nightlight_sum + Population_sum + temp_mean, data= Results, index = c("id", "year"), model = "within")
fixed_YIELD_mean_grain_treat.100<- plm(YIELD_mean_Cereal ~ treated.100 + Nightlight_sum + Population_sum + temp_mean, data= Results, index = c("id", "year"), model = "within")
Now I try to create a stargazer output containing all three of the models:
stargazer( fixed_YIELD_mean_to_treat.100, fixed_YIELD_mean_fruits_treat.100, fixed_YIELD_mean_grain_treat.100,
type = "html",
align = TRUE,
omit = c("year", "id"),
omit.labels = c("year FE", "id FE"),
add.lines= list(c("ID Fixed effects", "Yes", "Yes", "Yes"),
c("Time Fixed effects", "Yes", "Yes", "Yes")),
out = ".test1.html" )
But than I get the error:
Error in if (is.na(s)) { : the condition has length > 1
If I only include 2 models it always works. How can I plot three models in one stargazer output?
Upvotes: 2
Views: 2169
Reputation: 2817
As comment says, try to make shorter modelnames:
library("plm")
data("Produc", package="plm")
fe1 <- plm(pcap ~ hwy + water + unemp, data=Produc, index=c("state", "year"), model = "within")
fe2 <- plm(pcap ~ hwy + water + emp, data=Produc, index=c("state", "year"), model = "within")
fe3 <- plm(pcap ~ hwy + water + pc, data=Produc, index=c("state", "year"), model = "within")
stargazer(fe1, fe2, fe3, type="text")
================================================================
Dependent variable:
--------------------------------------
pcap
(1) (2) (3)
----------------------------------------------------------------
hwy 2.023*** 2.015*** 1.999***
(0.052) (0.050) (0.051)
water 1.974*** 1.989*** 1.935***
(0.043) (0.058) (0.063)
unemp -14.624
(19.682)
emp -0.073
(0.161)
pc 0.003
(0.004)
----------------------------------------------------------------
Observations 816 816 816
R2 0.901 0.901 0.901
Adjusted R2 0.895 0.895 0.895
F Statistic (df = 3; 765) 2,332.767*** 2,331.602*** 2,332.963***
================================================================
Note: *p<0.1; **p<0.05; ***p<0.01
Upvotes: 3