Reputation: 89
I implemented a custom loss function, which looks like this:
However, the gradient of this function is always zero and I don't understand why. The code for the objective function:
def objective(p, output):
x,y = p
a = minA
b = minB
r = 0.1
XA = 1/2 -1/2 * torch.tanh(100*((x - a[0])**2 + (y - a[1])**2 - (r + 0.02)**2))
XB = 1/2 -1/2 * torch.tanh(100*((x - b[0])**2 + (y - b[1])**2 - (r + 0.02)**2))
q = (1-XA)*((1-XB)* output + (XB))
output_grad, _ = torch.autograd.grad(q, (x,y))
output_grad.requires_grad_()
q = output_grad**2
return q
And the code for training the model (which is a simple, fully connected NN):
model = NN(input_size)
optimizer = optim.SGD(model.parameters(), lr=learning_rate)
for e in range(epochs) :
for configuration in total:
print("Train for configuration", configuration)
# Training pass
optimizer.zero_grad()
#output is q~
output = model(configuration)
#loss is the objective function we defined
loss = objective(configuration, output.item())
loss.backward()
optimizer.step()
I really think the problem is in the output_grad, _ = torch.autograd.grad(q, (x,y)). (During he training, "configuration" is a point sampled from a distribution identified by the coordinates x and y). Thanks!!
Here I provide the code on a google colab session: Google colab
Upvotes: 0
Views: 613
Reputation: 40618
Tanh is a bounded function and converges quite quickly to 1. Your XA and XB points are defined as
XA = 1/2 - 1/2 * torch.tanh(100*(z1 + z2 - z0))
XB = 1/2 - 1/2 * torch.tanh(100*(z3 + z4 - z0))
Since z1 + z2 - z0
and z3 + z4 - z0
are rather close to 1
, you will end up with an input close to 100. This means the tanh will output 1
, resulting in XA
and XB
begin zeros. You might not want to have this 100
coefficient if you want to have non zero outputs.
Upvotes: 1