Reputation: 89
I use the following code dor dcc upload component. I twisted the code that I have seen in this thread. In that thread, plot was rendered using plotly go, however, I would like to use plotly express instead of plotly go. Since px.line expects teh name of dataframe, I write it as px.line(df,...)
. But, in that thread, df is not defined in the if contents condition(in the answer of that thread.). As I write the df out of that condition, I encounter with the following error UnboundLocalError: local variable 'df' referenced before assignment. The code works when I upload a file. But, I would like to get rid of that error, because it i annoying to see it there. How can I handle this issue?
import base64
import datetime
import io
import plotly.graph_objs as go
import cufflinks as cf
import plotly.express as px
from dash import Dash, html, dcc, Input, Output,dash_table
import dash
from dash.dash_table.Format import Group
import pandas as pd
external_stylesheets = ["https://codepen.io/chriddyp/pen/bWLwgP.css"]
app = dash.Dash(__name__, external_stylesheets=external_stylesheets)
server = app.server
colors = {"graphBackground": "#F5F5F5", "background": "#ffffff", "text": "#000000"}
app.layout = html.Div(
[
dcc.Upload(
id="upload-data",
children=html.Div(["Drag and Drop or ", html.A("Select Files")]),
style={
"width": "100%",
"height": "60px",
"lineHeight": "60px",
"borderWidth": "1px",
"borderStyle": "dashed",
"borderRadius": "5px",
"textAlign": "center",
"margin": "10px",
},
# Allow multiple files to be uploaded
multiple=True,
),
dcc.Graph(id="Mygraph"),
html.Div(id="output-data-upload"),
]
)
@app.callback(
Output("Mygraph", "figure"),
[Input("upload-data", "contents"), Input("upload-data", "filename")],
)
def update_lineplot(contents, filename):
x = []
y = []
if contents:
contents = contents[0]
filename = filename[0]
df = parse_data(contents, filename)
#df = df.set_index(df.columns[0])
x=df['TIME']
y=df['VALUE2']
#print(df)
fig = px.line(df, x="TIME", y=["VALUE1", "VALUE2"],
facet_col_wrap=2,
facet_row_spacing=0.1,
facet_col_spacing=0.09)
return fig
def parse_data(contents, filename):
content_type, content_string = contents.split(",")
decoded = base64.b64decode(content_string)
try:
if "csv" in filename:
# Assume that the user uploaded a CSV or TXT file
df = pd.read_csv(io.StringIO(decoded.decode("utf-8")))
elif "xls" in filename:
# Assume that the user uploaded an excel file
df = pd.read_excel(io.BytesIO(decoded))
elif "txt" or "tsv" in filename:
# Assume that the user upl, delimiter = r'\s+'oaded an excel file
df = pd.read_csv(io.StringIO(decoded.decode("utf-8")), delimiter=r"\s+|;|,")
except Exception as e:
print(e)
return html.Div(["There was an error processing this file."])
return df
@app.callback(
Output("output-data-upload", "children"),
[Input("upload-data", "contents"), Input("upload-data", "filename")],
)
def update_table(contents, filename):
table = html.Div()
if contents:
contents = contents[0]
filename = filename[0]
df = parse_data(contents, filename)
table = html.Div(
[
html.H5(filename),
dash_table.DataTable(
data=df.to_dict("rows"),
columns=[{"name": i, "id": i} for i in df.columns],
),
html.Hr(),
html.Div("Raw Content"),
html.Pre(
contents[0:200] + "...",
style={"whiteSpace": "pre-wrap", "wordBreak": "break-all"},
),
]
)
return table
if __name__ == "__main__":
app.run_server(debug=True)
Upvotes: 1
Views: 182
Reputation: 9826
All you should do is to define an empty dataframe before the If statement, you will get in the beginning an empty graph and then when you upload a file, you will get your graph.
@app.callback(
Output("Mygraph", "figure"),
[Input("upload-data", "contents"), Input("upload-data", "filename")],
)
def update_lineplot(contents, filename):
x = []
y = []
df = pd.DataFrame(columns=["TIME","VALUE1", "VALUE2"])
if contents:
contents = contents[0]
filename = filename[0]
df = parse_data(contents, filename)
#df = df.set_index(df.columns[0])
x=df['TIME']
y=df['VALUE2']
#print(df)
fig = px.line(df, x="TIME", y=["VALUE1", "VALUE2"],
facet_col_wrap=2,
facet_row_spacing=0.1,
facet_col_spacing=0.09)
return fig
Output:
Upvotes: 2