Reputation: 181
I am facing a problem concerning aggregating my data to daily data. I have a data frame where NAs have been removed (Link of picture of data is given below). Data has been collected 3 times a day, but sometimes due to NAs, there is just 1 or 2 entries per day; some days data is missing completely.
I am now interested in calculating the daily mean of "dist": this means summing up the data of "dist" of one day and dividing it by number of entries per day (so 3 if there is no data missing that day). I would like to do this via a loop. How can I do this with a loop? The problem is that sometimes I have 3 entries per day and sometimes just 2 or even 1. I would like to tell R that for every day, it should sum up "dist" and divide it by the number of entries that are available for every day.
I just have no idea how to formulate a for loop for this purpose. I would really appreciate if you could give me any advice on that problem. Thanks for your efforts and kind regards,
Jan
Data frame: http://www.pic-upload.de/view-11435581/Data_loop.jpg.html
Edit: I used aggregate and tapply as suggested, however, the mean value of the data was not really calculated:
Group.1 x
1 2006-10-06 12:00:00 636.5395
2 2006-10-06 20:00:00 859.0109
3 2006-10-07 04:00:00 301.8548
4 2006-10-07 12:00:00 649.3357
5 2006-10-07 20:00:00 944.8272
6 2006-10-08 04:00:00 136.7393
7 2006-10-08 12:00:00 360.9560
8 2006-10-08 20:00:00 NaN
The code used was:
dates<-Dis_sub$date
distance<-Dis_sub$dist
aggregate(distance,list(dates),mean,na.rm=TRUE)
tapply(distance,dates,mean,na.rm=TRUE)
Upvotes: 1
Views: 1582
Reputation: 844
It looks like your main problem is that your date
field has times attached. The first thing you need to do is create a column that has just the date using something like
Dis_sub$date_only <- as.Date(Dis_sub$date)
Then using Joris Meys' solution (which is the right way to do it) should work.
However if for some reason you really want to use a loop you could try something like
newFrame <- data.frame()
for d in unique(Dis_sub$date){
meanDist <- mean(Dis_sub$dist[Dis_sub$date==d],na.rm=TRUE)
newFrame <- rbind(newFrame,c(d,meanDist))
}
But keep in mind that this will be slow and memory-inefficient.
Upvotes: 1
Reputation: 55695
Look at the data.table
package especially if your data is huge. Here is some code that calculates the mean of dist
by day
.
library(data.table)
dt = data.table(Data)
Data[,list(avg_dist = mean(dist, na.rm = T)),'date']
Upvotes: 2
Reputation: 108533
Don't use a loop. Use R. Some example data :
dates <- rep(seq(as.Date("2001-01-05"),
as.Date("2001-01-20"),
by="day"),
each=3)
values <- rep(1:16,each=3)
values[c(4,5,6,10,14,15,30)] <- NA
and any of :
aggregate(values,list(dates),mean,na.rm=TRUE)
tapply(values,dates,mean,na.rm=TRUE)
gives you what you want. See also ?aggregate
and ?tapply
.
If you want a dataframe back, you can look at the package plyr
:
Data <- as.data.frame(dates,values)
require(plyr)
ddply(data,"dates",mean,na.rm=TRUE)
Keep in mind that ddply
is not fully supporting the date format (yet).
Upvotes: 6