Reputation: 101
I have M points in 2-dimensional Euclidean space, and have stored them in an array X of size M x 2.
I have constructed a cost matrix whereby element ij is the distance d(X[i, :], X[j, :]). The distance function I am using is the standard Euclidean distance weighted by an inverse of the matrix D. i.e d(x,y)= < D^{-1}(x-y) , x-y >. I would like to know if there is a more efficient way of doing this, note I have practically avoided for loops.
import numpy as np
Dinv = np.linalg.inv(D)
def cost(X, Dinv):
Msq = len(X) ** 2
mesh = []
for i in range(2): # separate each coordinate axis
xmesh = np.meshgrid(X[:, i], X[:, i]) # meshgrid each axis
xmesh = xmesh[1] - xmesh[0] # create the difference matrix
xmesh = xmesh.reshape(Msq) # reshape into vector
mesh.append(xmesh) # save/append into list
meshv = np.vstack((mesh[0], mesh[1])).T # recombined coordinate axis
# apply D^{-1}
Dx = np.einsum("ij,kj->ki", Dinv, meshv)
return np.sum(Dx * meshv, axis=1) # dot the elements
Upvotes: 0
Views: 73
Reputation: 17191
I ll try something like this, mostly optimizing your meshv
calculation:
meshv = (X[:,None]-X).reshape(-1,2)
((meshv @ Dinv.T)*meshv).sum(1)
Upvotes: 1