Reputation: 317
I would like to compute the Area Under the Curve defined by a set of experimental values. I created a function to calculate an aproximation of the AUC using the Simpson's rule as I saw in this post. However, the function only works when it receives a vector of odd length. How can I modify the code to add the area of the last trapezoid when the input vector has an even length.
AUC <- function(x, h=1){
# AUC function computes the Area Under the Curve of a time serie using
# the Simpson's Rule (numerical method).
# https://link.springer.com/chapter/10.1007/978-1-4612-4974-0_26
# Arguments
# x: (vector) time serie values
# h: (int) temporal resolution of the time serie. default h=1
n = length(x)-1
xValues = seq(from=1, to=n, by=2)
sum <- list()
for(i in 1:length(xValues)){
n_sub <- xValues[[i]]-1
n <- xValues[[i]]
n_add <- xValues[[i]]+1
v1 <- x[[n_sub+1]]
v2 <- x[[n+1]]
v3 <- x[[n_add+1]]
s <- (h/3)*(v1+4*v2+v3)
sum <- append(sum, s)
}
sum <- unlist(sum)
auc <- sum(sum)
return(auc)
}
Here a data example:
smoothed = c(0.3,0.317,0.379,0.452,0.519,0.573,0.61,0.629,0.628,0.613,0.587,0.556,0.521,
0.485,0.448,0.411,0.363,0.317,0.273,0.227,0.185,0.148,0.12,0.103,0.093,0.086,
0.082,0.079,0.076,0.071,0.066,0.059,0.053,0.051,0.052,0.057,0.067,0.081,0.103,
0.129,0.165,0.209,0.252,0.292,0.328,0.363,0.398,0.431,0.459,0.479,0.491,0.494,
0.488,0.475,0.457,0.43,0.397,0.357,0.316,0.285,0.254,0.227,0.206,0.189,0.181,
0.171,0.157,0.151,0.162,0.192,0.239)
Upvotes: 3
Views: 697
Reputation: 96
Here, I show example code that uses the Simpson's 1/3 and 3/8 rules in tandem for the numerical integration of data. As always, the usual caveats about the possibility of coding errors or compatibility issues apply.
The output at the end compares the numerical estimates of this algorithm with the trapezoidal rule using R's "integrate" function.
#Algorithm adapted from:
#Numerical Methods for Engineers, Seventh Edition,
#By Chapra and Canale, page 623
#Modified to accept data instead of functional values
#Modified by: Jeffrey Harkness, M.S.
##Begin Simpson's rule function code
simp13 <- function(dat, h = 1){
ans = 2*h*(dat[1] + 4*dat[2] + dat[3])/6
return(ans)}
simp13m <- function(dat, h = 1){
summ <- dat[1]
n <- length(dat)
nseq <- seq(2,(n-2),2)
for(i in nseq){
summ <- summ + 4*dat[i] + 2*dat[i+1]}
summ <- summ + 4*dat[n-1] + dat[n]
result <- (h*summ)/3
return(result)}
simp38 <- function(dat, h = 1){
ans <- 3*h*(dat[1] + 3*sum(dat[2:3]) + dat[4])/8
return(ans)}
simpson = function(dat, h = 1){
hin = h
len = length(dat)
comp <- len %% 2
##number of segments
if(len == 2){
ans = sum(dat)/2*h} ##n = 2 is the trapezoidal rule
if(len == 3){
ans = simp13(dat, h = hin)}
if(len == 4){
ans = simp38(dat,h = hin)}
if(len == 6){
ans <- simp38(dat[1:4],h = hin) + simp13(dat[4:len],h = hin)}
if(len > 6 & comp == 0){
ans = simp38(dat[1:4],h = hin) + simp13m(dat[4:len],h = hin)}
if(len >= 5 & comp == 1){
ans = simp13m(dat,h = hin)}
return(ans)}
##End Simpson's rule function code
This next section of code shows the performance comparison. This code can easily be altered for different test functions and cases.
The precision difference tends to change with the sample size and test function used; this example is not intended to imply that the difference is always this pronounced.
#other algorithm for comparison purposes, from Allan Cameron above
oa <- function(x, h = 1) sum((x[-1] + x[-length(x)]) / 2 * h)
#Testing and algorithm comparison code
simans = NULL; oaans = NULL; simerr = NULL; oaerr = NULL; mp = NULL
for( j in 1:10){
n = j
#f = function(x) cos(x) + 2 ##Test functions
f = function(x) 0.2 + 25*x - 200*x^2 + 675*x^3 - 900*x^4 + 400*x^5
a = 0;b = 10
h = (b-a)/n
datain = seq(a,b,by = h)
preans = integrate(f,a,b)$value #precise numerical estimate of test function
simans[j] = simpson(f(datain), h = h)
oaans[j] = oa(f(datain), h = h)
(simerr[j] = abs(simans[j] - preans)/preans * 100)
(oaerr[j] = abs(oaans[j] - preans)/preans * 100)
mp[j] = simerr[j] < oaerr[j]
}
(outframe = data.frame("simpsons percent diff" = simerr,"trapezoidal percent diff" = oaerr, "more precise?" = mp, check.names = F))
simpsons percent diff trapezoidal percent diff more precise?
1 214.73489738 214.734897 FALSE
2 15.07958148 64.993410 TRUE
3 6.70203621 29.816799 TRUE
4 0.94247384 16.955208 TRUE
5 0.54830021 10.905620 TRUE
6 0.18616767 7.593825 TRUE
7 0.12051767 5.588209 TRUE
8 0.05890462 4.282980 TRUE
9 0.04087107 3.386525 TRUE
10 0.02412733 2.744500 TRUE
Upvotes: 1
Reputation: 173793
There may be a good reason for you to prefer using Simpson's rule, but if you're just looking for a quick and efficient estimate of AUC, the trapezoid rule is far easier to implement, and does not require an even number of breaks:
AUC <- function(x, h = 1) sum((x[-1] + x[-length(x)]) / 2 * h)
AUC(smoothed)
#> [1] 20.3945
Upvotes: 3
Reputation: 96
One recommended way to handle an even number of points and still achieve precision is to combine Simpson's 1/3 rule with Simpson's 3/8 rule, which can handle an even number of points. Such approaches can be found in (at least one or perhaps more) engineering textbooks on numerical methods.
However, as a practical matter, you can write a code chunk to check the data length and add a single trapezoid at the end, as was suggested in the last comment of the post to which you linked. I wouldn't assume that it is necessarily as precise as combining Simpson's 1/3 and 3/8 rules, but it is probably reasonable for many applications.
I would double-check my code edits below, but this is the basic idea.
AUC <- function(x, h=1){
# AUC function computes the Area Under the Curve of a time serie using
# the Simpson's Rule (numerical method).
# https://link.springer.com/chapter/10.1007/978-1-4612-4974-0_26
# Arguments
# x: (vector) time serie values
# h: (int) temporal resolution of the time serie. default h=1
#jh edit: check for even data length
#and chop off last data point if even
nn = length(x)
if(length(x) %% 2 == 0){
xlast = x[length(x)]
x = x[-length(x)]
}
n = length(x)-1
xValues = seq(from=1, to=n, by=2)
sum <- list()
for(i in 1:length(xValues)){
n_sub <- xValues[[i]]-1
n <- xValues[[i]]
n_add <- xValues[[i]]+1
v1 <- x[[n_sub+1]]
v2 <- x[[n+1]]
v3 <- x[[n_add+1]]
s <- (h/3)*(v1+4*v2+v3)
sum <- append(sum, s)
}
sum <- unlist(sum)
auc <- sum(sum)
##jh edit: add trapezoid for last two data points to result
if(nn %% 2 == 0){
auc <- auc + (x[length(x)] + xlast)/2 * h
}
return(auc)
}
sm = smoothed[-length(smoothed)]
length(sm)
[1] 70
#even data as an example
AUC(sm)
[1] 20.17633
#original odd data
AUC(smoothed)
[1] 20.389
Upvotes: 2