Reputation: 10531
Say I have
df = pl.DataFrame({'group': [1, 1, 1, 3, 3, 3, 4, 4]})
I have a numpy array of values, which I'd like to replace 'group'
3 with
values = np.array([9, 8, 7])
Here's what I've tried:
(
df
.with_columns(
pl.when(pl.col('group')==3)
.then(values)
.otherwise(pl.col('group'))
).alias('group')
)
ShapeError: shapes of `self`, `mask` and `other` are not suitable for `zip_with` operation
How can I do this correctly?
Upvotes: 1
Views: 451
Reputation: 21534
Not really simpler, but the map_elements
can be swapped out:
df.with_columns(
pl.when(pl.col.group == 3)
.then(
pl.lit(values).get(pl.int_range(pl.len()).over("group"))
)
.otherwise(pl.col.group)
.alias("group")
)
shape: (8, 1)
┌───────┐
│ group │
│ --- │
│ i64 │
╞═══════╡
│ 1 │
│ 1 │
│ 1 │
│ 9 │
│ 8 │
│ 7 │
│ 4 │
│ 4 │
└───────┘
Upvotes: 0
Reputation: 14730
A few things to consider.
One is that you always should convert your numpy arrays to polars Series
as we will use the arrow memory specification underneath and not numpys.
Second is that when -> then -> otherwise
operates on columns that are of equal length. We nudge the API in such a direction that you define a logical statement based of columns in your DataFrame
and therefore you should not know the indices (nor the lenght of a group) that you want to replace. This allows for much optimizations because if you do not define indices to replace we can push down a filter before that expression.
Anyway, your specific situation does know the length of the group, so we must use something different. We can first compute the indices where the conditional holds and then modify based on those indices.
df = pl.DataFrame({
"group": [1, 1, 1, 3, 3, 3, 4, 4]
})
values = np.array([9, 8, 7])
# compute indices of the predicate
idx = df.select(
pl.arg_where(pl.col("group") == 3)
).to_series()
# mutate on those locations
df.with_columns(
df["group"].scatter(idx, pl.Series(values))
)
Upvotes: 3
Reputation: 10531
Here's all I could come up with
df.with_columns(
pl.when(pl.col("group") == 3)
.then(
pl.col("group").cum_count().over("group")
.map_elements(lambda x: values[x - 1])
)
.otherwise("group")
)
shape: (8, 1)
┌───────┐
│ group │
│ --- │
│ i64 │
╞═══════╡
│ 1 │
│ 1 │
│ 1 │
│ 9 │
│ 8 │
│ 7 │
│ 4 │
│ 4 │
└───────┘
Surely there's a simpler way?
Upvotes: 1