Reputation: 1069
I have a dataframe like this:
Attended | JoinDate | JoinTime | JoinTime | |
---|---|---|---|---|
JoinTimeFirst | JoinTimeLast | |||
Yes | 009indrajeet | 12/3/2022 | 12/3/2022 19:50 | 12/3/2022 21:47 |
Yes | 09871143420.ms | 12/18/2022 | 12/18/2022 20:41 | 12/18/2022 20:41 |
Yes | 09s.bisht | 12/17/2022 | 12/17/2022 19:51 | 12/17/2022 19:51 |
and I need to change column headers like this:
Attended | JoinDate | JoinTimeFirst | JoinTimeLast | |
---|---|---|---|---|
Yes | 009indrajeet | 12/3/2022 | 12/3/2022 19:50 | 12/3/2022 21:47 |
Yes | 09871143420.ms | 12/18/2022 | 12/18/2022 20:41 | 12/18/2022 20:41 |
Yes | 09s.bisht | 12/17/2022 | 12/17/2022 19:51 | 12/17/2022 19:51 |
I tried multiple ways but noting worked out, any help will be appreciated. To get to the first dataframe, this is what I did:
import pandas as pd
df = pd.DataFrame({"Attended":["Yes","Yes","Yes"]
,"Email":["009indrajeet","09871143420.ms","09s.bisht"]
,"JoinTime":["Dec 3, 2022 19:50:52","Dec 3, 2022 20:10:52","Dec 3, 2022 21:47:32"]})
#convert JoinTime to timestamp column
df['JoinTime'] = pd.to_datetime(df['JoinTime'],format='%b %d, %Y %H:%M:%S', errors='raise')
#extract date from timestamp column
df['JoinDate'] = df['JoinTime'].dt.date
#created grouper dataset
df_grp = df.groupby(["Attended","Email","JoinDate"])
#define aggregations
dict_agg = {'JoinTime':[('JoinTimeFirst','min'),('JoinTimeLast','max'),('JoinTimes',set)]}
#do grouping with aggregations
df = df_grp.agg(dict_agg).reset_index()
print(df)
print(df.columns)
MultiIndex([('Attended', ''),
( 'Email', ''),
('JoinDate', ''),
('JoinTime', 'JoinTimeFirst'),
('JoinTime', 'JoinTimeLast'),
('JoinTime', 'JoinTimes')],
)
Upvotes: 0
Views: 218
Reputation: 863611
Use named aggregations - pass dictionary with changed format - keys are new columns names, values are tuples - first value is processing column and second is aggregation function:
dict_agg = {'JoinTimeFirst':('JoinTime','min'),
'JoinTimeLast':('JoinTime','min'),
'JoinTimes':('JoinTime',set)}
#do grouping with aggregations
df = df_grp.agg(**dict_agg).reset_index()
print (df)
Attended Email JoinDate JoinTimeFirst \
0 Yes 009indrajeet 2022-12-03 2022-12-03 19:50:52
1 Yes 09871143420.ms 2022-12-03 2022-12-03 20:10:52
2 Yes 09s.bisht 2022-12-03 2022-12-03 21:47:32
JoinTimeLast JoinTimes
0 2022-12-03 19:50:52 {2022-12-03 19:50:52}
1 2022-12-03 20:10:52 {2022-12-03 20:10:52}
2 2022-12-03 21:47:32 {2022-12-03 21:47:32}
You can also pass named aggregation:
#do grouping with aggregations
df = df_grp.agg(JoinTimeFirst=('JoinTime','min'),
JoinTimeLast=('JoinTime','min'),
JoinTimes=('JoinTime',set)).reset_index()
print (df)
Attended Email JoinDate JoinTimeFirst \
0 Yes 009indrajeet 2022-12-03 2022-12-03 19:50:52
1 Yes 09871143420.ms 2022-12-03 2022-12-03 20:10:52
2 Yes 09s.bisht 2022-12-03 2022-12-03 21:47:32
JoinTimeLast JoinTimes
0 2022-12-03 19:50:52 {2022-12-03 19:50:52}
1 2022-12-03 20:10:52 {2022-12-03 20:10:52}
2 2022-12-03 21:47:32 {2022-12-03 21:47:32}
Upvotes: 2
Reputation: 36
Below approach is more generalized and basically it is designed if your first row has column names
# Setting the columns based on the column 1
import pandas as pd
import numpy as np
# df = please load the dataframe to the df and assume that the empty values are read as null
final_col = []
for key, val in dict(df.iloc[0].fillna(0)).items():
if val == 0 :
final_col.append(key)
else:
final_col.append(val)
df.columns = final_col
df = df.loc[1:] # removing teh first column
df.reset_index(drop=True, inplace=True) # Resetting the index to 0
Upvotes: 1
Reputation: 367
new_df=df.dropna(axis=1).rename(columns = {df.columns[3]:'JoinTimeFirst',df.columns[4]:'JoinTimeLast'})
Upvotes: 1